論文の概要: Multimodal RewardBench: Holistic Evaluation of Reward Models for Vision Language Models
- arxiv url: http://arxiv.org/abs/2502.14191v1
- Date: Thu, 20 Feb 2025 01:48:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-21 14:29:21.585065
- Title: Multimodal RewardBench: Holistic Evaluation of Reward Models for Vision Language Models
- Title(参考訳): マルチモーダル・リワードベンチ:視覚言語モデルにおけるリワードモデルの全体的評価
- Authors: Michihiro Yasunaga, Luke Zettlemoyer, Marjan Ghazvininejad,
- Abstract要約: マルチモーダル報酬モデルを評価するためのエキスパートアノテートベンチマークであるMultimodal RewardBenchを紹介する。
我々のデータセットは、様々な視覚言語モデルから収集された5,211個の注釈付き(プロンプト、選択された応答、拒否された応答)三つ子からなる。
Gemini 1.5 ProやClaude 3.5 Sonnetといったトップパフォーマンスモデルでさえ、全体的な精度は72%に過ぎません。
- 参考スコア(独自算出の注目度): 82.92771279118888
- License:
- Abstract: Reward models play an essential role in training vision-language models (VLMs) by assessing output quality to enable aligning with human preferences. Despite their importance, the research community lacks comprehensive open benchmarks for evaluating multimodal reward models in VLMs. To address this gap, we introduce Multimodal RewardBench, an expert-annotated benchmark covering six domains: general correctness, preference, knowledge, reasoning, safety, and visual question-answering. Our dataset comprises 5,211 annotated (prompt, chosen response, rejected response) triplets collected from various VLMs. In evaluating a range of VLM judges, we find that even the top-performing models, Gemini 1.5 Pro and Claude 3.5 Sonnet, achieve only 72% overall accuracy. Notably, most models struggle in the reasoning and safety domains. These findings suggest that Multimodal RewardBench offers a challenging testbed for advancing reward model development across multiple domains. We release the benchmark at https://github.com/facebookresearch/multimodal_rewardbench.
- Abstract(参考訳): リワードモデルは、人間の好みに合わせて出力品質を評価することで、視覚言語モデル(VLM)の訓練において重要な役割を果たす。
その重要性にもかかわらず、研究コミュニティはVLMのマルチモーダル報酬モデルを評価するための包括的なオープンベンチマークを欠いている。
このギャップに対処するため、Multimodal RewardBenchは、一般的な正当性、嗜好、知識、推論、安全性、視覚的質問応答の6つの領域をカバーする専門家によるベンチマークである。
我々のデータセットは, 様々なVLMから収集した5,211個の注釈付き(prompt, chosen response, rejected response)三重項からなる。
VLMの判定範囲を評価すると、トップパフォーマンスモデルであるGemini 1.5 ProとClaude 3.5 Sonnetでさえ、全体的な精度は72%に過ぎなかった。
特に、ほとんどのモデルは推論と安全性の領域で苦労しています。
これらの結果は、Multimodal RewardBenchが複数のドメインにわたる報酬モデル開発を促進するための挑戦的なテストベッドを提供していることを示唆している。
ベンチマークはhttps://github.com/facebookresearch/multimodal_rewardbench.comで公開しています。
関連論文リスト
- InternLM-XComposer2.5-Reward: A Simple Yet Effective Multi-Modal Reward Model [80.93387166769679]
IXC-2.5-Rewardは、大規模視覚言語モデルと人間の好みを一致させる、単純で効果的なマルチモーダル報酬モデルである。
IXC-2.5-Rewardは、最新のマルチモーダル報酬モデルベンチマークにおいて優れた結果を得るとともに、テキストのみの報酬モデルベンチマーク上での競合性能を示す。
論文 参考訳(メタデータ) (2025-01-21T18:47:32Z) - AVTrustBench: Assessing and Enhancing Reliability and Robustness in Audio-Visual LLMs [70.4578433679737]
我々は9つの細工されたタスクにまたがる600万のサンプルからなるAudio-Visual Trustworthiness Assessment Benchmark (AVTrustBench)を紹介する。
ベンチマークを用いて、13の最先端AVLLMを広範囲に評価した。
その結果、既存のモデルのほとんどは、人間のような理解を達成できないことが判明した。
論文 参考訳(メタデータ) (2025-01-03T23:03:24Z) - DARE: Diverse Visual Question Answering with Robustness Evaluation [16.87867803628065]
視覚言語モデル(VLM)は、テキストのみの大規模言語モデルと視覚のみのモデルの顕著な機能を拡張する。
彼らは数え上げや空間的推論といった重要な視覚言語(VL)推論能力に苦しむ。
本稿では,ロバストネス評価を用いたDARE,Diverse Visual Question Answeringを紹介する。
論文 参考訳(メタデータ) (2024-09-26T16:31:50Z) - MJ-Bench: Is Your Multimodal Reward Model Really a Good Judge for Text-to-Image Generation? [59.7772329962047]
MJ-Benchは、マルチモーダル・ジャッジを評価するために、包括的な選好データセットを組み込んだ新しいベンチマークである。
具体的には、より小型のCLIPベースのスコアリングモデル、オープンソースのVLM、オープンソースのVLMなど、様々なマルチモーダル・ジャッジを評価する。
実験の結果、オープンソースのVLMは一般的にフィードバックが良く、GPT-4oは他の審査員を平均上回っていることがわかった。
論文 参考訳(メタデータ) (2024-07-05T20:03:16Z) - RewardBench: Evaluating Reward Models for Language Modeling [100.28366840977966]
本稿では,報酬モデル評価のためのベンチマークデータセットとコードベースであるRewardBenchを紹介する。
データセットは、チャット、推論、安全性にまたがる、プロンプト・チョーゼン・リジェクトされたトリオのコレクションである。
RewardBenchのリーダーボードでは、様々な方法で訓練された報酬モデルを評価する。
論文 参考訳(メタデータ) (2024-03-20T17:49:54Z) - MMBench: Is Your Multi-modal Model an All-around Player? [114.45702807380415]
視覚言語モデルのマルチモーダル能力を評価するためのベンチマークであるMMBenchを提案する。
MMBenchは、よく設計された品質制御スキームで慎重にキュレートされている。
MMBenchは英語版と中国語版の両方で複数の質問を取り入れている。
論文 参考訳(メタデータ) (2023-07-12T16:23:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。