論文の概要: Motion Planning for Autonomous Driving: The State of the Art and
Perspectives
- arxiv url: http://arxiv.org/abs/2303.09824v2
- Date: Tue, 21 Mar 2023 12:48:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-22 11:18:49.306855
- Title: Motion Planning for Autonomous Driving: The State of the Art and
Perspectives
- Title(参考訳): 自動運転のためのモーションプランニング : 最新技術と展望
- Authors: Siyu Teng, Xuemin Hu, Peng Deng, Bai Li, Yuchen Li, Zhe Xuanyuan,
Dongsheng Yang, Yunfeng Ai, Lingxi Li, Long Chen, Fenghua Zhu
- Abstract要約: 本稿では,パイプライン計画やエンドツーエンド計画など,最先端の計画手法の見直しを目的とする。
パイプラインの手法については,拡張と最適化のメカニズムに関する議論とともに,アルゴリズムの選択について調査する。
実験用プラットフォームをレビューし、読者が適切なトレーニングと検証方法を選択できるようにする。
- 参考スコア(独自算出の注目度): 16.160049780028444
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Thanks to the augmented convenience, safety advantages, and potential
commercial value, Intelligent vehicles (IVs) have attracted wide attention
throughout the world. Although a few of autonomous driving unicorns assert that
IVs will be commercially deployable by 2025, their implementation is still
restricted to small-scale validation due to various issues, among which precise
computation of control commands or trajectories by planning methods remains a
prerequisite for IVs. This paper aims to review state-of-the-art planning
methods, including pipeline planning and end-to-end planning methods. In terms
of pipeline methods, a survey of selecting algorithms is provided along with a
discussion of the expansion and optimization mechanisms, whereas in end-to-end
methods, the training approaches and verification scenarios of driving tasks
are points of concern. Experimental platforms are reviewed to facilitate
readers in selecting suitable training and validation methods. Finally, the
current challenges and future directions are discussed. The side-by-side
comparison presented in this survey not only helps to gain insights into the
strengths and limitations of the reviewed methods but also assists with
system-level design choices.
- Abstract(参考訳): 利便性の向上、安全性の優位性、潜在的な商業価値のおかげで、Intelligent Vehicle (IV) は世界中で注目を集めている。
自動運転ユニコーンの何人かは、2025年までにivsは商業的に展開可能であると主張しているが、その実装は様々な問題により小規模の検証に限定されており、そのなかには計画手法による制御コマンドや軌道の正確な計算が依然としてivsの前提条件となっている。
本稿では,パイプライン計画やエンドツーエンド計画など,最先端の計画手法の見直しを目的とする。
パイプライン手法では,拡張と最適化のメカニズムに関する議論とともに,アルゴリズムの選択に関する調査が提供される。一方,エンドツーエンド手法では,タスクのトレーニングアプローチと検証シナリオが懸念点となっている。
実験プラットフォームをレビューし、読者が適切なトレーニングと検証方法を選択できるようにする。
最後に,現在の課題と今後の方向性について述べる。
この調査で示されたサイドバイサイド比較は、レビューされた手法の強みや限界についての洞察を得るだけでなく、システムレベルの設計選択を支援する。
関連論文リスト
- Confidence-Aware Deep Learning for Load Plan Adjustments in the Parcel Service Industry [13.121155604809372]
本研究では,大規模輸送物流企業におけるインバウンド負荷計画調整を自動化するためのディープラーニングに基づくアプローチを開発する。
これは、不確実性が増大する中で、効率よくレジリエントなEコマース事業計画のための重要な課題に対処する。
論文 参考訳(メタデータ) (2024-11-26T15:13:13Z) - Machine Learning for Autonomous Vehicle's Trajectory Prediction: A
comprehensive survey, Challenges, and Future Research Directions [3.655021726150368]
AVの文脈における軌道予測に関する200以上の研究について検討した。
本総説では,いくつかの深層学習手法を総合的に評価する。
既存の文献の課題を特定し,潜在的研究の方向性を概説することにより,AV軌道予測領域における知識の進歩に大きく貢献する。
論文 参考訳(メタデータ) (2023-07-12T10:20:19Z) - Integration of Reinforcement Learning Based Behavior Planning With
Sampling Based Motion Planning for Automated Driving [0.5801044612920815]
本研究では,高度行動計画のための訓練された深層強化学習ポリシーを用いる方法を提案する。
私たちの知る限りでは、この研究は、この方法で深層強化学習を適用した最初のものである。
論文 参考訳(メタデータ) (2023-04-17T13:49:55Z) - TAE: A Semi-supervised Controllable Behavior-aware Trajectory Generator
and Predictor [3.6955256596550137]
軌道生成と予測は、知的車両のプランナー評価と意思決定において重要な役割を果たす。
本稿では,ドライバの動作を明示的にモデル化する行動認識型トラジェクトリ・オートエンコーダ(TAE)を提案する。
我々のモデルは、統一アーキテクチャにおける軌道生成と予測に対処し、両方のタスクに利益をもたらす。
論文 参考訳(メタデータ) (2022-03-02T17:37:44Z) - Prescriptive Process Monitoring: Quo Vadis? [64.39761523935613]
本論文はシステム文献レビュー(SLR)を通して,本分野における既存手法について考察する。
SLRは今後の研究の課題や分野に関する洞察を提供し、規範的なプロセス監視手法の有用性と適用性を高めることができる。
論文 参考訳(メタデータ) (2021-12-03T08:06:24Z) - How To Not Drive: Learning Driving Constraints from Demonstration [0.0]
本研究では,人間の運転軌跡から運動計画制約を学習するための新しい手法を提案する。
行動計画は、交通規則に従うために要求される高いレベルの意思決定に責任を負う。
運動プランナーの役割は、自動運転車が従うための実用的で安全な軌道を作り出すことである。
論文 参考訳(メタデータ) (2021-10-01T20:47:04Z) - Contingencies from Observations: Tractable Contingency Planning with
Learned Behavior Models [82.34305824719101]
人間は未来の出来事を正確に推論することで決定を下す素晴らしい能力を持っている。
本研究では,高次元のシーン観察からエンドツーエンドに学習する汎用コンテンシビリティプランナを開発する。
このモデルが行動観察から忍耐強くコンティンジェンシーを学習できることを示す。
論文 参考訳(メタデータ) (2021-04-21T14:30:20Z) - Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction [71.97877759413272]
軌道予測は、自動運転車が行動を計画し実行するための安全クリティカルなツールです。
近年の手法は,WTAやベスト・オブ・マニーといったマルチコース学習の目標を用いて,強力なパフォーマンスを実現している。
我々の研究は、軌道予測、学習出力、そして運転知識を使って制約を課すことによるより良い予測における2つの重要な課題に対処する。
論文 参考訳(メタデータ) (2021-04-16T17:58:56Z) - Just Label What You Need: Fine-Grained Active Selection for Perception
and Prediction through Partially Labeled Scenes [78.23907801786827]
提案手法は,コストに配慮した手法と,部分的にラベル付けされたシーンを通じて詳細なサンプル選択を可能にする一般化を導入している。
実世界の大規模自動運転データセットに関する我々の実験は、微粒な選択が知覚、予測、下流計画タスクのパフォーマンスを向上させることを示唆している。
論文 参考訳(メタデータ) (2021-04-08T17:57:41Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
道路にはよく定義された地形、地形、交通規則がある。
本稿では,構造的事前を損失関数として組み込むことを提案する。
実世界の自動運転データセットにおけるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2020-06-04T03:56:11Z) - PiP: Planning-informed Trajectory Prediction for Autonomous Driving [69.41885900996589]
マルチエージェント設定における予測問題に対処するために,計画インフォームド・トラジェクトリ予測(PiP)を提案する。
本手法は,エゴカーの計画により予測過程を通知することにより,高速道路のデータセット上でのマルチエージェント予測の最先端性能を実現する。
論文 参考訳(メタデータ) (2020-03-25T16:09:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。