Quantum computation in silicon-vacancy centers based on nonadiabatic
geometric gates protected by dynamical decoupling
- URL: http://arxiv.org/abs/2303.10053v3
- Date: Thu, 24 Aug 2023 08:45:35 GMT
- Title: Quantum computation in silicon-vacancy centers based on nonadiabatic
geometric gates protected by dynamical decoupling
- Authors: M.-R. Yun, Jin-Lei Wu, L.-L. Yan, Yu Jia, S.-L. Su, C.-X Shan
- Abstract summary: We propose to implement quantum computation for the first time using SiV centers placed in a one-dimensional phononic waveguide.
The encoding of qubits in long-lifetime ground states of silicon-vacancy centers can reduce the effect of spontaneous emission.
This scheme may provide a promising path toward high-fidelity geometric quantum computation in solid-state systems.
- Score: 1.1314740482679555
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Due to strong zero-phonon line emission, narrow inhomogeneous broadening, and
stable optical transition frequencies, the quantum system consisting of
negatively charged silicon-vacancy (SiV) centers in diamond is highly expected
to develop universal quantum computation. We propose to implement quantum
computation for the first time using SiV centers placed in a one-dimensional
phononic waveguide, for which quantum gates are realized in a nonadiabatic
geometric way and protected by dynamical decoupling (DD). The scheme has the
feature of geometric quantum computation that is robust to control errors and
the advantage of DD that is insensitive to environmental impact. Furthermore,
the encoding of qubits in long-lifetime ground states of silicon-vacancy
centers can reduce the effect of spontaneous emission. Numerical simulations
demonstrate the practicability of the SiV center system for quantum computation
and the robustness improvement of quantum gates by DD pulses. This scheme may
provide a promising path toward high-fidelity geometric quantum computation in
solid-state systems.
Related papers
- A quantum eigenvalue solver based on tensor networks [0.0]
Electronic ground states are of central importance in chemical simulations, but have remained beyond the reach of efficient classical algorithms.
We introduce a hybrid quantum-classical eigenvalue solver that constructs a wavefunction ansatz from a linear combination of matrix product states in rotated orbital bases.
This study suggests a promising new avenue for scaling up simulations of strongly correlated chemical systems on near-term quantum hardware.
arXiv Detail & Related papers (2024-04-16T02:04:47Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Simulating Open Quantum System Dynamics on NISQ Computers with
Generalized Quantum Master Equations [0.0]
We present a quantum algorithm based on the Generalized Quantum Master Equation (GQME) approach to simulate open quantum system dynamics.
We show how the Sz.-Nagy dilation theorem can be employed to transform the non-unitary propagator into a unitary one in a higher-dimensional Hilbert space.
arXiv Detail & Related papers (2022-09-11T22:53:16Z) - Digital quantum simulation of non-perturbative dynamics of open systems
with orthogonal polynomials [0.0]
We propose the use of the Time Evolving Density operator with Orthogonal Polynomials Algorithm (TEDOPA) on a quantum computer.
We show that exponential scalings of computational resources can potentially be avoided for time-evolution simulations of the systems considered in this work.
arXiv Detail & Related papers (2022-03-28T11:16:33Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Experimental implementation of universal holonomic quantum computation
on solid-state spins with optimal control [12.170408456188934]
We experimentally implement nonadiabatic holonomic quantum computation with solid spins in diamond at room-temperature.
Compared with previous geometric methods, the fidelities of a universal set of holonomic single-qubit and two-qubit quantum logic gates are improved.
This work makes an important step towards fault-tolerant scalable geometric quantum computation in realistic systems.
arXiv Detail & Related papers (2021-02-18T09:02:02Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Super-robust nonadiabatic geometric quantum control [0.0]
Nonadiabatic geometric quantum computation (NGQC) and nonadiabatic holonomic quantum computation (NHQC) have been proposed to reduce the run time of geometric quantum gates.
We show that NGQC and NHQC scenarios have no advantage over standard dynamical gates in most cases.
We propose a scheme of super-robust nonadiabatic geometric quantum control, in which the super-robust condition can guarantee both high speed and robustness.
arXiv Detail & Related papers (2020-08-05T14:50:56Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.