Coherent Charge Oscillations in a Bilayer Graphene Double Quantum Dot
- URL: http://arxiv.org/abs/2303.10119v4
- Date: Fri, 24 Nov 2023 12:39:02 GMT
- Title: Coherent Charge Oscillations in a Bilayer Graphene Double Quantum Dot
- Authors: Katrin Hecker, Luca Banszerus, Aaron Sch\"apers, Samuel M\"oller,
Anton Peters, Eike Icking, Kenji Watanabe, Takashi Taniguchi, Christian Volk,
Christoph Stampfer
- Abstract summary: We report coherent charge oscillations and $T*$ charge decoherence times in a bilayer graphene double QD.
The observation of charge coherence allows to study the origin and spectral distribution of charge noise in future experiments.
- Score: 0.17413461132662073
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The coherent dynamics of a quantum mechanical two-level system passing
through an anti-crossing of two energy levels can give rise to
Landau-Zener-St\"uckelberg-Majorana (LZSM) interference. LZSM interference
spectroscopy has proven to be a fruitful tool to investigate charge noise and
charge decoherence in semiconductor quantum dots (QDs). Recently, bilayer
graphene has developed as a promising platform to host highly tunable QDs
potentially useful for hosting spin and valley qubits. So far, in this system
no coherent oscillations have been observed and little is known about charge
noise in this material. Here, we report coherent charge oscillations and
$T_2^*$ charge decoherence times in a bilayer graphene double QD. The charge
decoherence times are measured independently using LZSM interference and photon
assisted tunneling. Both techniques yield $T_2^*$ average values in the range
of 400 to 500 ps. The observation of charge coherence allows to study the
origin and spectral distribution of charge noise in future experiments.
Related papers
- Two-Photon Interference from an InAs Quantum Dot emitting in the Telecom C-Band [2.078504222049996]
Two-photon interference from an InAs/InAlGaAs quantum dot (QD) emitting in the telecom C-band with a raw two-photon interference visibility of $V_HOM=(71.9pm0.2)$ % is demonstrated.
arXiv Detail & Related papers (2025-01-27T11:27:09Z) - Quantum error mitigation for Fourier moment computation [49.1574468325115]
This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware.
The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates.
The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude.
arXiv Detail & Related papers (2024-01-23T19:10:24Z) - Dipole coupling of a bilayer graphene quantum dot to a high-impedance
microwave resonator [0.14908922253160745]
superconducting microwave resonator with a double quantum dot electrostatically defined in a graphene-based van der Waals heterostructure.
We achieve sensitive and fast detection with a signal-to-noise ratio of 3.5 within 1 $mumathrms$ integration time.
Our results introduce cQED as a probe for quantum dots in van der Waals materials and indicate a path toward coherent charge-photon coupling with bilayer graphene quantum dots.
arXiv Detail & Related papers (2023-12-22T11:59:20Z) - Strong hole-photon coupling in planar Ge: probing the charge degree and
Wigner molecule states [0.0]
We present strong coupling between a hole charge qubit and microwave photons in a superconducting quantum interference device (SQUID) array resonator.
This work paves the way towards coherent quantum connections between remote hole qubits in planar Ge, required to scale up hole-based quantum processors.
arXiv Detail & Related papers (2023-10-31T17:27:46Z) - Interacting Two-Level Systems as a Source of 1/f Charge Noise in Quantum
Dot Qubits [0.0]
Charge noise in semiconducting quantum dots has been observed to have a 1/f spectrum.
We propose a model in which a pair of quantum dots are coupled to a 2D bath of two level systems.
We find that 1/f electric potential noise spectra at the quantum dots and cross correlation in the noise between the two quantum dots are in qualitative agreement with experiment.
arXiv Detail & Related papers (2023-08-25T21:19:51Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Two-particle time-domain interferometry in the Fractional Quantum Hall
Effect regime [0.0]
We consider anyons, the fractionally charged quasi-particles 20 of the Fractional Quantum Hall Effect occurring in two-dimensional electronic conductors in high magnetic fields.
Surprisingly, anyons show large quantum coherence when transmitted through the localized states of electronic Fabry-P'erot interferometers, but almost no quantum interference when transmitted via the propagating states of Mach-Zehnder interferometers.
arXiv Detail & Related papers (2022-01-24T09:54:01Z) - Quantum control of the tin-vacancy spin qubit in diamond [41.74498230885008]
Group-IV color centers in diamond are a promising light-matter interface for quantum networking devices.
The negatively charged tin-vacancy center (SnV) is particularly interesting, as its large spin-orbit coupling offers strong protection against phonon dephasing.
We demonstrate multi-axis coherent control of the SnV spin qubit via an all-optical stimulated Raman drive.
arXiv Detail & Related papers (2021-06-01T18:36:12Z) - Dirac-type nodal spin liquid revealed by refined quantum many-body
solver using neural-network wave function, correlation ratio, and level
spectroscopy [0.0]
We show that a machine-learning method for quantum many-body systems has achieved state-of-the-art accuracy.
This achievement demonstrates that the quantum-state representation using machine learning techniques is a promising tool for investigating grand challenges in quantum many-body physics.
arXiv Detail & Related papers (2020-05-28T16:54:47Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.