SITReg: Multi-resolution architecture for symmetric, inverse consistent,
and topology preserving image registration
- URL: http://arxiv.org/abs/2303.10211v4
- Date: Tue, 30 Jan 2024 08:29:03 GMT
- Title: SITReg: Multi-resolution architecture for symmetric, inverse consistent,
and topology preserving image registration
- Authors: Joel Honkamaa and Pekka Marttinen
- Abstract summary: We propose a novel deep learning registration architecture based on extracting multi-resolution feature representations.
Our method achieves state-of-the-art registration accuracy on two datasets.
- Score: 7.5986411724707095
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning has emerged as a strong alternative for classical iterative
methods for deformable medical image registration, where the goal is to find a
mapping between the coordinate systems of two images. Popular classical image
registration methods enforce the useful inductive biases of symmetricity,
inverse consistency, and topology preservation by construct. However, while
many deep learning registration methods encourage these properties via loss
functions, no earlier methods enforce all of them by construct. Here, we
propose a novel registration architecture based on extracting multi-resolution
feature representations which is by construct symmetric, inverse consistent,
and topology preserving. We also develop an implicit layer for memory efficient
inversion of the deformation fields. Our method achieves state-of-the-art
registration accuracy on two datasets.
Related papers
- MsMorph: An Unsupervised pyramid learning network for brain image registration [4.000367245594772]
MsMorph is an image registration framework aimed at mimicking the manual process of registering image pairs.
It decodes semantic information at different scales and continuously compen-sates for the predicted deformation field.
The proposed method simulates the manual approach to registration, focusing on different regions of the image pairs and their neighborhoods.
arXiv Detail & Related papers (2024-10-23T19:20:57Z) - Bayesian Unsupervised Disentanglement of Anatomy and Geometry for Deep Groupwise Image Registration [50.62725807357586]
This article presents a general Bayesian learning framework for multi-modal groupwise image registration.
We propose a novel hierarchical variational auto-encoding architecture to realise the inference procedure of the latent variables.
Experiments were conducted to validate the proposed framework, including four different datasets from cardiac, brain, and abdominal medical images.
arXiv Detail & Related papers (2024-01-04T08:46:39Z) - Object Representations as Fixed Points: Training Iterative Refinement
Algorithms with Implicit Differentiation [88.14365009076907]
Iterative refinement is a useful paradigm for representation learning.
We develop an implicit differentiation approach that improves the stability and tractability of training.
arXiv Detail & Related papers (2022-07-02T10:00:35Z) - $\texttt{GradICON}$: Approximate Diffeomorphisms via Gradient Inverse
Consistency [16.72466200341455]
We use a neural network to predict a map between a source and a target image as well as the map when swapping the source and target images.
We achieve state-of-the-art registration performance on a variety of real-world medical image datasets.
arXiv Detail & Related papers (2022-06-13T04:03:49Z) - A training-free recursive multiresolution framework for diffeomorphic
deformable image registration [6.929709872589039]
We propose a novel diffeomorphic training-free approach for deformable image registration.
The proposed architecture is simple in design. The moving image is warped successively at each resolution and finally aligned to the fixed image.
The entire system is end-to-end and optimized for each pair of images from scratch.
arXiv Detail & Related papers (2022-02-01T15:17:17Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
We propose an effective non-blind deconvolution approach by learning discriminative shrinkage functions to implicitly model these terms.
Experimental results show that the proposed method performs favorably against the state-of-the-art ones in terms of efficiency and accuracy.
arXiv Detail & Related papers (2021-11-27T12:12:57Z) - A Learning Framework for Diffeomorphic Image Registration based on
Quasi-conformal Geometry [1.2891210250935146]
We propose the quasi-conformal registration network (QCRegNet), an unsupervised learning framework, to obtain diffeomorphic 2D image registrations.
QCRegNet consists of the estimator network and the Beltrami solver network (BSNet)
Results show that the registration accuracy is comparable to state-of-the-art methods and diffeomorphism is to a great extent guaranteed.
arXiv Detail & Related papers (2021-10-20T14:23:24Z) - DeepGMR: Learning Latent Gaussian Mixture Models for Registration [113.74060941036664]
Point cloud registration is a fundamental problem in 3D computer vision, graphics and robotics.
In this paper, we introduce Deep Gaussian Mixture Registration (DeepGMR), the first learning-based registration method.
Our proposed method shows favorable performance when compared with state-of-the-art geometry-based and learning-based registration methods.
arXiv Detail & Related papers (2020-08-20T17:25:16Z) - Image-to-image Mapping with Many Domains by Sparse Attribute Transfer [71.28847881318013]
Unsupervised image-to-image translation consists of learning a pair of mappings between two domains without known pairwise correspondences between points.
Current convention is to approach this task with cycle-consistent GANs.
We propose an alternate approach that directly restricts the generator to performing a simple sparse transformation in a latent layer.
arXiv Detail & Related papers (2020-06-23T19:52:23Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z) - Fast Symmetric Diffeomorphic Image Registration with Convolutional
Neural Networks [11.4219428942199]
We present a novel, efficient unsupervised symmetric image registration method.
We evaluate our method on 3D image registration with a large scale brain image dataset.
arXiv Detail & Related papers (2020-03-20T22:07:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.