論文の概要: Identification of Novel Classes for Improving Few-Shot Object Detection
- arxiv url: http://arxiv.org/abs/2303.10422v1
- Date: Sat, 18 Mar 2023 14:12:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-21 19:27:25.664421
- Title: Identification of Novel Classes for Improving Few-Shot Object Detection
- Title(参考訳): 少数ショット物体検出改善のための新規クラス同定
- Authors: Zeyu Shangguan, Mohammad Rostami
- Abstract要約: Few-shot Object Detection (FSOD) メソッドは、クラス毎に少数のトレーニングサンプルのみを使用して、堅牢なオブジェクト検出を実現することで、改善を提供する。
我々は、FSOD性能を向上させるためのトレーニング中に、未ラベルの新規物体を正のサンプルとして検出し、利用するための半教師付きアルゴリズムを開発した。
実験の結果,本手法は既存のSOTA FSOD法よりも有効であり,優れた結果が得られた。
- 参考スコア(独自算出の注目度): 12.013345715187285
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conventional training of deep neural networks requires a large number of the
annotated image which is a laborious and time-consuming task, particularly for
rare objects. Few-shot object detection (FSOD) methods offer a remedy by
realizing robust object detection using only a few training samples per class.
An unexplored challenge for FSOD is that instances from unlabeled novel classes
that do not belong to the fixed set of training classes appear in the
background. These objects behave similarly to label noise, leading to FSOD
performance degradation. We develop a semi-supervised algorithm to detect and
then utilize these unlabeled novel objects as positive samples during training
to improve FSOD performance. Specifically, we propose a hierarchical ternary
classification region proposal network (HTRPN) to localize the potential
unlabeled novel objects and assign them new objectness labels. Our improved
hierarchical sampling strategy for the region proposal network (RPN) also
boosts the perception ability of the object detection model for large objects.
Our experimental results indicate that our method is effective and outperforms
the existing state-of-the-art (SOTA) FSOD methods.
- Abstract(参考訳): ディープニューラルネットワークの従来的なトレーニングには、特にまれな対象に対して、手間と時間を要する多くの注釈付きイメージが必要である。
Few-shot Object Detection (FSOD) メソッドは、クラス毎に少数のトレーニングサンプルのみを使用して堅牢なオブジェクト検出を実現することで、改善を提供する。
FSODの未発見の課題は、固定されたトレーニングクラスのセットに属さないラベルのない新しいクラスのインスタンスが背景に現れることである。
これらのオブジェクトはラベルノイズと同様に振る舞うため、fsodパフォーマンスが低下する。
学習中にこれらのラベルなしの新規物体を正のサンプルとして検出・活用し,fsod性能を向上させるための半教師付きアルゴリズムを開発した。
具体的には,階層型3次分類領域提案ネットワーク(HTRPN)を提案する。
地域提案ネットワーク(RPN)の階層的サンプリング戦略の改善により、大規模オブジェクトに対する物体検出モデルの認識能力も向上する。
実験の結果,本手法は既存のSOTA FSOD法よりも有効であり,優れた結果が得られた。
関連論文リスト
- Exploiting Unlabeled Data with Multiple Expert Teachers for Open Vocabulary Aerial Object Detection and Its Orientation Adaptation [58.37525311718006]
OVAD(Open-vocabulary Aero Object Detection)という,航空物体検出問題の新しい定式化を行った。
本稿では,CLIP-activated students-Teacher DetectionフレームワークであるCastDetを提案する。
本フレームワークは,ロバストなローカライズ教師といくつかのボックス選択戦略を統合し,新しいオブジェクトの高品質な提案を生成する。
論文 参考訳(メタデータ) (2024-11-04T12:59:13Z) - Debiased Novel Category Discovering and Localization [40.02326438622898]
新たなクラスディスカバリー・ローカライゼーション(NCDL)の課題に焦点をあてる。
本稿では,クラス非依存領域提案ネットワーク(RPN)とクラス対応RPNを組み合わせたデバイアスドリージョンマイニング(DRM)手法を提案する。
我々はNCDLベンチマークで広範な実験を行い、提案手法が従来の手法よりもはるかに優れていることを示す。
論文 参考訳(メタデータ) (2024-02-29T03:09:16Z) - Few-shot Object Detection in Remote Sensing: Lifting the Curse of
Incompletely Annotated Novel Objects [23.171410277239534]
物体検出のための自己学習型FSOD (ST-FSOD) アプローチを提案する。
提案手法は,様々なFSOD設定における最先端性能を大きなマージンで向上させる。
論文 参考訳(メタデータ) (2023-09-19T13:00:25Z) - Improved Region Proposal Network for Enhanced Few-Shot Object Detection [23.871860648919593]
Few-shot Object Detection (FSOD) メソッドは、古典的なオブジェクト検出手法の限界に対する解決策として登場した。
FSODトレーニング段階において,未ラベルの新規物体を正のサンプルとして検出し,利用するための半教師付きアルゴリズムを開発した。
地域提案ネットワーク(RPN)の階層的サンプリング戦略の改善により,大規模オブジェクトに対するオブジェクト検出モデルの認識が向上する。
論文 参考訳(メタデータ) (2023-08-15T02:35:59Z) - Label-Efficient Object Detection via Region Proposal Network
Pre-Training [58.50615557874024]
地域提案ネットワーク(RPN)に効果的な事前学習を提供するための簡単な事前学習タスクを提案する。
RPN事前学習のないマルチステージ検出器と比較して,本手法はダウンストリームタスク性能を継続的に改善することができる。
論文 参考訳(メタデータ) (2022-11-16T16:28:18Z) - Incremental-DETR: Incremental Few-Shot Object Detection via
Self-Supervised Learning [60.64535309016623]
本稿では,DeTRオブジェクト検出器上での微調整および自己教師型学習によるインクリメンタル・デクリメンタル・デクリメンタル・デクリメンタル・オブジェクト検出を提案する。
まず,DeTRのクラス固有のコンポーネントを自己監督で微調整する。
さらに,DeTRのクラス固有のコンポーネントに知識蒸留を施した数発の微調整戦略を導入し,破滅的な忘れを伴わずに新しいクラスを検出するネットワークを奨励する。
論文 参考訳(メタデータ) (2022-05-09T05:08:08Z) - Few-shot Weakly-Supervised Object Detection via Directional Statistics [55.97230224399744]
少数ショットコモンオブジェクトローカライゼーション(COL)と少数ショット弱監視オブジェクト検出(WSOD)のための確率論的多重インスタンス学習手法を提案する。
本モデルでは,新しいオブジェクトの分布を同時に学習し,期待-最大化ステップにより局所化する。
提案手法は, 単純であるにもかかわらず, 少数のCOLとWSOD, 大規模WSODタスクにおいて, 高いベースラインを達成できることを示す。
論文 参考訳(メタデータ) (2021-03-25T22:34:16Z) - Exploring Bottom-up and Top-down Cues with Attentive Learning for Webly
Supervised Object Detection [76.9756607002489]
本稿では,新しいクラスを対象としたWebSOD法を提案する。
提案手法はボトムアップとトップダウンを組み合わせた新しいクラス検出手法である。
提案手法は,3種類の新規/ベース分割を持つPASCAL VOCデータセット上で実証した。
論文 参考訳(メタデータ) (2020-03-22T03:11:24Z) - Incremental Few-Shot Object Detection [96.02543873402813]
OpeN-ended Centre nEtは、いくつかの例でクラスオブジェクトの検出を漸進的に学習する検出器である。
ONCEはインクリメンタルな学習パラダイムを十分に尊重しており、新しいクラス登録では、数発のトレーニングサンプルを1回だけフォワードパスするだけでよい。
論文 参考訳(メタデータ) (2020-03-10T12:56:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。