論文の概要: Elastic Interaction Energy-Based Generative Model: Approximation in
Feature Space
- arxiv url: http://arxiv.org/abs/2303.10553v1
- Date: Sun, 19 Mar 2023 03:39:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-21 18:41:34.628075
- Title: Elastic Interaction Energy-Based Generative Model: Approximation in
Feature Space
- Title(参考訳): 弾性相互作用エネルギーに基づく生成モデル:特徴空間の近似
- Authors: Chuqi Chen, Yue Wu, Yang Xiang
- Abstract要約: 弾性相互作用エネルギー(EIE)に基づく損失関数を用いた生成モデリングの新しい手法を提案する。
EIEに基づく計量の利用は、分布のグローバルな情報を考慮した長距離特性など、いくつかの利点を示す。
MNIST、FashionMNIST、CIFAR-10、CelebAなどの一般的なデータセットに対する実験結果から、EIEG GANモデルがモード崩壊を緩和し、安定性を向上し、モデル性能を向上させることを示した。
- 参考スコア(独自算出の注目度): 14.783344918500813
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a novel approach to generative modeling using a
loss function based on elastic interaction energy (EIE), which is inspired by
the elastic interaction between defects in crystals. The utilization of the
EIE-based metric presents several advantages, including its long range property
that enables consideration of global information in the distribution. Moreover,
its inclusion of a self-interaction term helps to prevent mode collapse and
captures all modes of distribution. To overcome the difficulty of the
relatively scattered distribution of high-dimensional data, we first map the
data into a latent feature space and approximate the feature distribution
instead of the data distribution. We adopt the GAN framework and replace the
discriminator with a feature transformation network to map the data into a
latent space. We also add a stabilizing term to the loss of the feature
transformation network, which effectively addresses the issue of unstable
training in GAN-based algorithms. Experimental results on popular datasets,
such as MNIST, FashionMNIST, CIFAR-10, and CelebA, demonstrate that our EIEG
GAN model can mitigate mode collapse, enhance stability, and improve model
performance.
- Abstract(参考訳): 本稿では, 結晶中の欠陥間の弾性的相互作用に触発された弾性相互作用エネルギー(eie)に基づく損失関数を用いた生成的モデリング手法を提案する。
EIEに基づく計量の利用は、分布のグローバルな情報を考慮した長距離特性など、いくつかの利点を示す。
さらに、自己相互作用項を含むことにより、モード崩壊を防ぎ、全てのモードの分布をキャプチャする。
高次元データの比較的散在する分布の難しさを克服するために,まずデータを潜在特徴空間にマッピングし,データ分布の代わりに特徴分布を近似する。
我々は、GANフレームワークを採用し、識別器を特徴変換ネットワークに置き換えて、データを潜在空間にマッピングする。
また、GANベースのアルゴリズムにおける不安定なトレーニングの問題を効果的に解決する機能変換ネットワークの喪失に安定化用語を加える。
MNIST、FashionMNIST、CIFAR-10、CelebAなどの一般的なデータセットに対する実験結果から、EIEG GANモデルがモード崩壊を緩和し、安定性を向上し、モデル性能を向上させることを示した。
関連論文リスト
- Optimal Transport-Based Displacement Interpolation with Data Augmentation for Reduced Order Modeling of Nonlinear Dynamical Systems [0.0]
本稿では,複雑なシステムにおける非線形力学の表現を強化するために,最適輸送理論と変位を利用した新しいリダクション・オーダー・モデル(ROM)を提案する。
複雑なシステム挙動の予測における精度と効率の向上を示し、計算物理学や工学における幅広い応用の可能性を示している。
論文 参考訳(メタデータ) (2024-11-13T16:29:33Z) - Stability and Generalizability in SDE Diffusion Models with Measure-Preserving Dynamics [11.919291977879801]
逆問題では、測定やデータから因果因子を推定する過程を記述する。
拡散モデルは、逆問題を解決する強力な生成ツールとして期待されている。
論文 参考訳(メタデータ) (2024-06-19T15:55:12Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
フェデレートされた学習は、微調整された特徴をスキイングし、モデルの堅牢性を損なうリスクがある。
3つのロバスト性指標を導入し、多様なロバストデータセットで実験を行う。
提案手法は,パラメータ効率のよい微調整手法を含む多種多様なシナリオにまたがるロバスト性を著しく向上させる。
論文 参考訳(メタデータ) (2024-01-25T09:18:51Z) - Dynamic Kernel-Based Adaptive Spatial Aggregation for Learned Image
Compression [63.56922682378755]
本稿では,空間アグリゲーション機能の拡張に焦点をあて,動的カーネルベースの変換符号化を提案する。
提案したアダプティブアグリゲーションはカーネルオフセットを生成し、コンテント条件付き範囲の有効な情報をキャプチャして変換を支援する。
実験により,本手法は,最先端の学習手法と比較して,3つのベンチマークにおいて高い速度歪み性能が得られることを示した。
論文 参考訳(メタデータ) (2023-08-17T01:34:51Z) - InVAErt networks: a data-driven framework for model synthesis and
identifiability analysis [0.0]
inVAErtは物理システムのデータ駆動分析と合成のためのフレームワークである。
これは、前方および逆写像を表す決定論的デコーダ、系の出力の確率分布を捉える正規化フロー、入力と出力の間の単射性の欠如についてコンパクトな潜在表現を学ぶ変分エンコーダを使用する。
論文 参考訳(メタデータ) (2023-07-24T07:58:18Z) - Towards Understanding and Mitigating Dimensional Collapse in Heterogeneous Federated Learning [112.69497636932955]
フェデレートラーニングは、プライバシを考慮したデータ共有を必要とせずに、さまざまなクライアントでモデルをトレーニングすることを目的としている。
本研究では,データの不均一性がグローバル集約モデルの表現に与える影響について検討する。
フェデレーション学習における次元的崩壊を効果的に緩和する新しい手法である sc FedDecorr を提案する。
論文 参考訳(メタデータ) (2022-10-01T09:04:17Z) - Combating Mode Collapse in GANs via Manifold Entropy Estimation [70.06639443446545]
Generative Adversarial Networks (GAN) は、様々なタスクやアプリケーションにおいて魅力的な結果を示している。
GANのモード崩壊問題に対処するための新しいトレーニングパイプラインを提案する。
論文 参考訳(メタデータ) (2022-08-25T12:33:31Z) - Inference-InfoGAN: Inference Independence via Embedding Orthogonal Basis
Expansion [2.198430261120653]
解離学習は、生成モデルが一般的な戦略である独立かつ解釈可能な潜在変数を構築することを目的としている。
本稿では,直交基底拡張(OBE)をInfoGANネットワークに組み込むことで,新しいGANベースの非絡み合いフレームワークを提案する。
我々の推論情報GANは、モデル微調整なしで、FactVAE、分離されたferenceAttribute Predictability(SAP)、Mutual Information Gap(MIG)、およびVP(VP)の指標で高い歪みスコアを得る。
論文 参考訳(メタデータ) (2021-10-02T11:54:23Z) - Out-of-distribution Generalization via Partial Feature Decorrelation [72.96261704851683]
本稿では,特徴分解ネットワークと対象画像分類モデルとを協調的に最適化する,PFDL(Partial Feature Deorrelation Learning)アルゴリズムを提案する。
実世界のデータセットを用いた実験により,OOD画像分類データセットにおけるバックボーンモデルの精度が向上することを示した。
論文 参考訳(メタデータ) (2020-07-30T05:48:48Z) - Model Fusion with Kullback--Leibler Divergence [58.20269014662046]
異種データセットから学習した後続分布を融合する手法を提案する。
我々のアルゴリズムは、融合モデルと個々のデータセット後部の両方に対する平均場仮定に依存している。
論文 参考訳(メタデータ) (2020-07-13T03:27:45Z) - To Regularize or Not To Regularize? The Bias Variance Trade-off in
Regularized AEs [10.611727286504994]
AEモデルの生成決定論的品質に及ぼす潜伏剤の影響について検討する。
我々は、FlexAEと呼ばれるモデルが、AEベースの生成モデルのための新しい最先端技術であることを示します。
論文 参考訳(メタデータ) (2020-06-10T14:00:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。