Generative Adversarial Classification Network with Application to
Network Traffic Classification
- URL: http://arxiv.org/abs/2303.10681v1
- Date: Sun, 19 Mar 2023 15:00:47 GMT
- Title: Generative Adversarial Classification Network with Application to
Network Traffic Classification
- Authors: Rozhina Ghanavi, Ben Liang, Ali Tizghadam
- Abstract summary: We propose a joint data imputation and data classification method, termed generative adversarial classification network (GACN)
For the scenario where some data samples are unlabeled, we propose an extension termed semi-supervised GACN (SSGACN), which is able to use the partially labeled data to improve classification accuracy.
We conduct experiments with real-world network traffic data traces, which demonstrate that GACN and SS-GACN can more accurately impute data features that are more important for classification, and they outperform existing methods in terms of classification accuracy.
- Score: 25.93711502488151
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large datasets in machine learning often contain missing data, which
necessitates the imputation of missing data values. In this work, we are
motivated by network traffic classification, where traditional data imputation
methods do not perform well. We recognize that no existing method directly
accounts for classification accuracy during data imputation. Therefore, we
propose a joint data imputation and data classification method, termed
generative adversarial classification network (GACN), whose architecture
contains a generator network, a discriminator network, and a classification
network, which are iteratively optimized toward the ultimate objective of
classification accuracy. For the scenario where some data samples are
unlabeled, we further propose an extension termed semi-supervised GACN
(SSGACN), which is able to use the partially labeled data to improve
classification accuracy. We conduct experiments with real-world network traffic
data traces, which demonstrate that GACN and SS-GACN can more accurately impute
data features that are more important for classification, and they outperform
existing methods in terms of classification accuracy.
Related papers
- Latent Enhancing AutoEncoder for Occluded Image Classification [2.6217304977339473]
We introduce LEARN: Latent Enhancing feAture Reconstruction Network.
An auto-encoder based network that can be incorporated into the classification model before its head.
On the OccludedPASCAL3D+ dataset, the proposed LEARN outperforms standard classification models.
arXiv Detail & Related papers (2024-02-10T12:22:31Z) - Domain-adaptive Message Passing Graph Neural Network [67.35534058138387]
Cross-network node classification (CNNC) aims to classify nodes in a label-deficient target network by transferring the knowledge from a source network with abundant labels.
We propose a domain-adaptive message passing graph neural network (DM-GNN), which integrates graph neural network (GNN) with conditional adversarial domain adaptation.
arXiv Detail & Related papers (2023-08-31T05:26:08Z) - Dynamic Conceptional Contrastive Learning for Generalized Category
Discovery [76.82327473338734]
Generalized category discovery (GCD) aims to automatically cluster partially labeled data.
Unlabeled data contain instances that are not only from known categories of the labeled data but also from novel categories.
One effective way for GCD is applying self-supervised learning to learn discriminate representation for unlabeled data.
We propose a Dynamic Conceptional Contrastive Learning framework, which can effectively improve clustering accuracy.
arXiv Detail & Related papers (2023-03-30T14:04:39Z) - DOC-NAD: A Hybrid Deep One-class Classifier for Network Anomaly
Detection [0.0]
Machine Learning approaches have been used to enhance the detection capabilities of Network Intrusion Detection Systems (NIDSs)
Recent work has achieved near-perfect performance by following binary- and multi-class network anomaly detection tasks.
This paper proposes a Deep One-Class (DOC) classifier for network intrusion detection by only training on benign network data samples.
arXiv Detail & Related papers (2022-12-15T00:08:05Z) - Mutual Information Learned Classifiers: an Information-theoretic
Viewpoint of Training Deep Learning Classification Systems [9.660129425150926]
Cross entropy loss can easily lead us to find models which demonstrate severe overfitting behavior.
In this paper, we prove that the existing cross entropy loss minimization for training DNN classifiers essentially learns the conditional entropy of the underlying data distribution.
We propose a mutual information learning framework where we train DNN classifiers via learning the mutual information between the label and input.
arXiv Detail & Related papers (2022-10-03T15:09:19Z) - CvS: Classification via Segmentation For Small Datasets [52.821178654631254]
This paper presents CvS, a cost-effective classifier for small datasets that derives the classification labels from predicting the segmentation maps.
We evaluate the effectiveness of our framework on diverse problems showing that CvS is able to achieve much higher classification results compared to previous methods when given only a handful of examples.
arXiv Detail & Related papers (2021-10-29T18:41:15Z) - Self-Trained One-class Classification for Unsupervised Anomaly Detection [56.35424872736276]
Anomaly detection (AD) has various applications across domains, from manufacturing to healthcare.
In this work, we focus on unsupervised AD problems whose entire training data are unlabeled and may contain both normal and anomalous samples.
To tackle this problem, we build a robust one-class classification framework via data refinement.
We show that our method outperforms state-of-the-art one-class classification method by 6.3 AUC and 12.5 average precision.
arXiv Detail & Related papers (2021-06-11T01:36:08Z) - ORDisCo: Effective and Efficient Usage of Incremental Unlabeled Data for
Semi-supervised Continual Learning [52.831894583501395]
Continual learning assumes the incoming data are fully labeled, which might not be applicable in real applications.
We propose deep Online Replay with Discriminator Consistency (ORDisCo) to interdependently learn a classifier with a conditional generative adversarial network (GAN)
We show ORDisCo achieves significant performance improvement on various semi-supervised learning benchmark datasets for SSCL.
arXiv Detail & Related papers (2021-01-02T09:04:14Z) - Fine-Grained Visual Classification with Efficient End-to-end
Localization [49.9887676289364]
We present an efficient localization module that can be fused with a classification network in an end-to-end setup.
We evaluate the new model on the three benchmark datasets CUB200-2011, Stanford Cars and FGVC-Aircraft.
arXiv Detail & Related papers (2020-05-11T14:07:06Z) - Robust Classification of High-Dimensional Spectroscopy Data Using Deep
Learning and Data Synthesis [0.5801044612920815]
A novel application of a locally-connected neural network (NN) for the binary classification of spectroscopy data is proposed.
A two-step classification process is presented as an alternative to the binary and one-class classification paradigms.
arXiv Detail & Related papers (2020-03-26T11:33:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.