ElimPCL: Eliminating Noise Accumulation with Progressive Curriculum Labeling for Source-Free Domain Adaptation
- URL: http://arxiv.org/abs/2503.23712v1
- Date: Mon, 31 Mar 2025 04:28:27 GMT
- Title: ElimPCL: Eliminating Noise Accumulation with Progressive Curriculum Labeling for Source-Free Domain Adaptation
- Authors: Jie Cheng, Hao Zheng, Meiguang Zheng, Lei Wang, Hao Wu, Jian Zhang,
- Abstract summary: Source-Free Domain Adaptation (SFDA) aims to train a target model without source data, and the key is to generate pseudo-labels.<n>We observe that the source model often produces highly uncertain pseudo-labels for hard samples, particularly those heavily affected by domain shifts.<n>We propose a novel Progressive Curriculum Labeling (ElimPCL) method, which iteratively filters trustworthy pseudo-labeled samples.<n>Extensive experiments validate the effectiveness of ElimPCL, achieving up to a 3.4% improvement on challenging tasks.
- Score: 12.088386261002762
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Source-Free Domain Adaptation (SFDA) aims to train a target model without source data, and the key is to generate pseudo-labels using a pre-trained source model. However, we observe that the source model often produces highly uncertain pseudo-labels for hard samples, particularly those heavily affected by domain shifts, leading to these noisy pseudo-labels being introduced even before adaptation and further reinforced through parameter updates. Additionally, they continuously influence neighbor samples through propagation in the feature space.To eliminate the issue of noise accumulation, we propose a novel Progressive Curriculum Labeling (ElimPCL) method, which iteratively filters trustworthy pseudo-labeled samples based on prototype consistency to exclude high-noise samples from training. Furthermore, a Dual MixUP technique is designed in the feature space to enhance the separability of hard samples, thereby mitigating the interference of noisy samples on their neighbors.Extensive experiments validate the effectiveness of ElimPCL, achieving up to a 3.4% improvement on challenging tasks compared to state-of-the-art methods.
Related papers
- Enhancing Sample Utilization in Noise-Robust Deep Metric Learning With Subgroup-Based Positive-Pair Selection [84.78475642696137]
The existence of noisy labels in real-world data negatively impacts the performance of deep learning models.<n>We propose a noise-robust DML framework with SubGroup-based Positive-pair Selection (SGPS)<n>SGPS constructs reliable positive pairs for noisy samples to enhance the sample utilization.
arXiv Detail & Related papers (2025-01-19T14:41:55Z) - Foster Adaptivity and Balance in Learning with Noisy Labels [26.309508654960354]
We propose a novel approach named textbfSED to deal with label noise in a textbfSelf-adaptivtextbfE and class-balancetextbfD manner.
A mean-teacher model is then employed to correct labels of noisy samples.
We additionally propose a self-adaptive and class-balanced sample re-weighting mechanism to assign different weights to detected noisy samples.
arXiv Detail & Related papers (2024-07-03T03:10:24Z) - Extracting Clean and Balanced Subset for Noisy Long-tailed Classification [66.47809135771698]
We develop a novel pseudo labeling method using class prototypes from the perspective of distribution matching.
By setting a manually-specific probability measure, we can reduce the side-effects of noisy and long-tailed data simultaneously.
Our method can extract this class-balanced subset with clean labels, which brings effective performance gains for long-tailed classification with label noise.
arXiv Detail & Related papers (2024-04-10T07:34:37Z) - Learning with Imbalanced Noisy Data by Preventing Bias in Sample
Selection [82.43311784594384]
Real-world datasets contain not only noisy labels but also class imbalance.
We propose a simple yet effective method to address noisy labels in imbalanced datasets.
arXiv Detail & Related papers (2024-02-17T10:34:53Z) - Decoupled Prototype Learning for Reliable Test-Time Adaptation [50.779896759106784]
Test-time adaptation (TTA) is a task that continually adapts a pre-trained source model to the target domain during inference.
One popular approach involves fine-tuning model with cross-entropy loss according to estimated pseudo-labels.
This study reveals that minimizing the classification error of each sample causes the cross-entropy loss's vulnerability to label noise.
We propose a novel Decoupled Prototype Learning (DPL) method that features prototype-centric loss computation.
arXiv Detail & Related papers (2024-01-15T03:33:39Z) - PASS: Peer-Agreement based Sample Selection for training with Noisy Labels [16.283722126438125]
The prevalence of noisy-label samples poses a significant challenge in deep learning, inducing overfitting effects.
Current methodologies often rely on the small-loss hypothesis or feature-based selection to separate noisy- and clean-label samples.
We propose a new noisy-label detection method, termed Peer-Agreement based Sample Selection (PASS), to address this problem.
arXiv Detail & Related papers (2023-03-20T00:35:33Z) - MAPS: A Noise-Robust Progressive Learning Approach for Source-Free
Domain Adaptive Keypoint Detection [76.97324120775475]
Cross-domain keypoint detection methods always require accessing the source data during adaptation.
This paper considers source-free domain adaptive keypoint detection, where only the well-trained source model is provided to the target domain.
arXiv Detail & Related papers (2023-02-09T12:06:08Z) - Neighborhood Collective Estimation for Noisy Label Identification and
Correction [92.20697827784426]
Learning with noisy labels (LNL) aims at designing strategies to improve model performance and generalization by mitigating the effects of model overfitting to noisy labels.
Recent advances employ the predicted label distributions of individual samples to perform noise verification and noisy label correction, easily giving rise to confirmation bias.
We propose Neighborhood Collective Estimation, in which the predictive reliability of a candidate sample is re-estimated by contrasting it against its feature-space nearest neighbors.
arXiv Detail & Related papers (2022-08-05T14:47:22Z) - ANL: Anti-Noise Learning for Cross-Domain Person Re-Identification [25.035093667770052]
We propose an Anti-Noise Learning (ANL) approach, which contains two modules.
FDA module is designed to gather the id-related samples and disperse id-unrelated samples, through the camera-wise contrastive learning and adversarial adaptation.
Reliable Sample Selection ( RSS) module utilizes an Auxiliary Model to correct noisy labels and select reliable samples for the Main Model.
arXiv Detail & Related papers (2020-12-27T02:38:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.