MAQA: A Quantum Framework for Supervised Learning
- URL: http://arxiv.org/abs/2303.11028v1
- Date: Mon, 20 Mar 2023 11:18:22 GMT
- Title: MAQA: A Quantum Framework for Supervised Learning
- Authors: Antonio Macaluso, Matthias Klusch, Stefano Lodi, Claudio Sartori
- Abstract summary: This work proposes a universal, efficient framework that can reproduce the output of a plethora of classical supervised machine learning algorithms.
The proposed framework is named Multiple Aggregator Quantum Algorithm (MAQA) due to its capability to combine multiple and diverse functions.
As a second meaningful addition, we discuss the adoption of the proposed framework as hybrid quantum-classical and fault-tolerant quantum algorithm.
- Score: 2.064612766965483
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum Machine Learning has the potential to improve traditional machine
learning methods and overcome some of the main limitations imposed by the
classical computing paradigm. However, the practical advantages of using
quantum resources to solve pattern recognition tasks are still to be
demonstrated.
This work proposes a universal, efficient framework that can reproduce the
output of a plethora of classical supervised machine learning algorithms
exploiting quantum computation's advantages. The proposed framework is named
Multiple Aggregator Quantum Algorithm (MAQA) due to its capability to combine
multiple and diverse functions to solve typical supervised learning problems.
In its general formulation, MAQA can be potentially adopted as the quantum
counterpart of all those models falling into the scheme of aggregation of
multiple functions, such as ensemble algorithms and neural networks. From a
computational point of view, the proposed framework allows generating an
exponentially large number of different transformations of the input at the
cost of increasing the depth of the corresponding quantum circuit linearly.
Thus, MAQA produces a model with substantial descriptive power to broaden the
horizon of possible applications of quantum machine learning with a
computational advantage over classical methods. As a second meaningful
addition, we discuss the adoption of the proposed framework as hybrid
quantum-classical and fault-tolerant quantum algorithm.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum-Train: Rethinking Hybrid Quantum-Classical Machine Learning in the Model Compression Perspective [7.7063925534143705]
We introduce the Quantum-Train(QT) framework, a novel approach that integrates quantum computing with machine learning algorithms.
QT achieves remarkable results by employing a quantum neural network alongside a classical mapping model.
arXiv Detail & Related papers (2024-05-18T14:35:57Z) - Exploring Quantum-Enhanced Machine Learning for Computer Vision: Applications and Insights on Noisy Intermediate-Scale Quantum Devices [0.0]
This study explores the intersection of quantum computing and Machine Learning (ML)
It evaluates the effectiveness of hybrid quantum-classical algorithms, such as the data re-uploading scheme and the patch Generative Adversarial Networks (GAN) model, on small-scale quantum devices.
arXiv Detail & Related papers (2024-04-01T20:55:03Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Quantum Algorithm Cards: Streamlining the development of hybrid
classical-quantum applications [0.0]
The emergence of quantum computing proposes a revolutionary paradigm that can radically transform numerous scientific and industrial application domains.
The ability of quantum computers to scale computations implies better performance and efficiency for certain algorithmic tasks than current computers provide.
To gain benefit from such improvement, quantum computers must be integrated with existing software systems, a process that is not straightforward.
arXiv Detail & Related papers (2023-10-04T06:02:59Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Explainable Quantum Machine Learning [0.7046417074932257]
Methods of artificial intelligence (AI) and especially machine learning (ML) have been growing ever more complex.
In parallel, quantum machine learning (QML) is emerging with the ongoing improvement of quantum computing hardware.
arXiv Detail & Related papers (2023-01-22T15:17:12Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Quantum Machine Learning For Classical Data [0.0]
We study the intersection of quantum computing and supervised machine learning algorithms.
In particular, we investigate what extent quantum computers can be used to accelerate supervised machine learning algorithms.
arXiv Detail & Related papers (2021-05-08T12:11:44Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.