論文の概要: ContraNeRF: Generalizable Neural Radiance Fields for Synthetic-to-real
Novel View Synthesis via Contrastive Learning
- arxiv url: http://arxiv.org/abs/2303.11052v2
- Date: Thu, 30 Mar 2023 11:28:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-31 16:46:17.850376
- Title: ContraNeRF: Generalizable Neural Radiance Fields for Synthetic-to-real
Novel View Synthesis via Contrastive Learning
- Title(参考訳): contranerf: コントラスト学習による合成から現実へのニューラル・ラミアンス・フィールドの一般化
- Authors: Hao Yang, Lanqing Hong, Aoxue Li, Tianyang Hu, Zhenguo Li, Gim Hee
Lee, Liwei Wang
- Abstract要約: まず,合成から現実への新規な視点合成における合成データの影響について検討した。
本稿では,幾何制約を伴う多視点一貫した特徴を学習するために,幾何対応のコントラスト学習を導入することを提案する。
提案手法は,PSNR,SSIM,LPIPSの点で,既存の一般化可能な新規ビュー合成手法よりも高い画質で精細な画像を描画することができる。
- 参考スコア(独自算出の注目度): 102.46382882098847
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although many recent works have investigated generalizable NeRF-based novel
view synthesis for unseen scenes, they seldom consider the synthetic-to-real
generalization, which is desired in many practical applications. In this work,
we first investigate the effects of synthetic data in synthetic-to-real novel
view synthesis and surprisingly observe that models trained with synthetic data
tend to produce sharper but less accurate volume densities. For pixels where
the volume densities are correct, fine-grained details will be obtained.
Otherwise, severe artifacts will be produced. To maintain the advantages of
using synthetic data while avoiding its negative effects, we propose to
introduce geometry-aware contrastive learning to learn multi-view consistent
features with geometric constraints. Meanwhile, we adopt cross-view attention
to further enhance the geometry perception of features by querying features
across input views. Experiments demonstrate that under the synthetic-to-real
setting, our method can render images with higher quality and better
fine-grained details, outperforming existing generalizable novel view synthesis
methods in terms of PSNR, SSIM, and LPIPS. When trained on real data, our
method also achieves state-of-the-art results.
- Abstract(参考訳): 最近の多くの研究は、見えないシーンに対する一般化可能なNeRFベースの新規ビュー合成を研究しているが、多くの実践的応用において望まれる合成から現実への一般化はめったに考えられない。
本研究では,合成データを用いた新しい視点合成における合成データの効果を最初に検討し,合成データで学習されたモデルがよりシャープだが正確な体積密度を生み出す傾向があることを驚くほど観察した。
ボリューム密度が正しい画素については、細かな詳細情報が得られる。
そうでなければ、深刻な人工物が生産される。
本稿では,そのネガティブな効果を回避しつつ,合成データを用いる利点を維持するために,幾何学的制約を伴う多視点一貫した特徴を学習するために,幾何認識型コントラスト学習を導入することを提案する。
また,入力ビューにまたがる特徴を問合せすることで,特徴の幾何学的知覚をさらに高めるために,クロスビューに着目した。
提案手法は,PSNR,SSIM,LPIPSの手法により,より高品質で詳細な画像の描画が可能であり,既存の一般化可能な新規ビュー合成手法よりも優れていることを示す。
実データでトレーニングすると,本手法は最先端の結果も得る。
関連論文リスト
- Is Synthetic Image Useful for Transfer Learning? An Investigation into Data Generation, Volume, and Utilization [62.157627519792946]
ブリッジドトランスファー(ブリッジドトランスファー)と呼ばれる新しいフレームワークを導入する。このフレームワークは、当初、トレーニング済みモデルの微調整に合成画像を使用し、転送性を向上させる。
合成画像と実画像のスタイルアライメントを改善するために,データセットスタイルの逆変換方式を提案する。
提案手法は10の異なるデータセットと5つの異なるモデルで評価され、一貫した改善が示されている。
論文 参考訳(メタデータ) (2024-03-28T22:25:05Z) - UAV-Sim: NeRF-based Synthetic Data Generation for UAV-based Perception [62.71374902455154]
ニューラルレンダリングの最近の進歩を利用して、静的および動的ノベルビューUAVベースの画像レンダリングを改善する。
本研究では,主に実データと合成データのハイブリッドセットに基づいて最先端検出モデルが最適化された場合,性能が大幅に向上することを示す。
論文 参考訳(メタデータ) (2023-10-25T00:20:37Z) - You Don't Have to Be Perfect to Be Amazing: Unveil the Utility of
Synthetic Images [2.0790547421662064]
我々は、忠実さ、多様性、プライバシー、実用性など、総合的な合成画像評価ツールを確立した。
100k以上の胸部X線画像とその合成コピーを分析し、合成画像の忠実度、多様性、プライバシーの間に必然的なトレードオフがあることを実証した。
論文 参考訳(メタデータ) (2023-05-25T13:47:04Z) - GM-NeRF: Learning Generalizable Model-based Neural Radiance Fields from
Multi-view Images [79.39247661907397]
本稿では,自由視点画像の合成に有効なフレームワークであるGeneralizable Model-based Neural Radiance Fieldsを提案する。
具体的には、多視点2D画像からの出現コードを幾何学的プロキシに登録するための幾何学誘導型アテンション機構を提案する。
論文 参考訳(メタデータ) (2023-03-24T03:32:02Z) - Is synthetic data from generative models ready for image recognition? [69.42645602062024]
本研究では,最新のテキスト・画像生成モデルから生成した合成画像が,画像認識タスクにどのように利用できるかを検討した。
本稿では,既存の生成モデルからの合成データの強大さと欠点を示し,認識タスクに合成データを適用するための戦略を提案する。
論文 参考訳(メタデータ) (2022-10-14T06:54:24Z) - Cascaded and Generalizable Neural Radiance Fields for Fast View
Synthesis [35.035125537722514]
ビュー合成のためのカスケードおよび一般化可能なニューラル放射場法であるCG-NeRFを提案する。
DTUデータセットの複数の3DシーンでCG-NeRFをトレーニングする。
CG-NeRFは、様々な合成および実データに対して、最先端の一般化可能なニューラルネットワークレンダリング手法より優れていることを示す。
論文 参考訳(メタデータ) (2022-08-09T12:23:48Z) - ProbNVS: Fast Novel View Synthesis with Learned Probability-Guided
Sampling [42.37704606186928]
本稿では,MVSの事前学習に基づいて,新しいビュー合成フレームワークを構築することを提案する。
本手法は,最先端のベースラインに比べて15~40倍高速なレンダリングを実現する。
論文 参考訳(メタデータ) (2022-04-07T14:45:42Z) - A Scaling Law for Synthetic-to-Real Transfer: A Measure of Pre-Training [52.93808218720784]
合成から現実への変換学習は,実タスクのための合成画像と接地真実アノテーションを用いた事前学習を行うフレームワークである。
合成画像はデータの不足を克服するが、事前訓練されたモデルで微調整性能がどのようにスケールするかは定かではない。
我々は、合成事前学習データの様々なタスク、モデル、複雑さにおける学習曲線を一貫して記述する、単純で一般的なスケーリング法則を観察する。
論文 参考訳(メタデータ) (2021-08-25T02:29:28Z) - Synthetic Data for Model Selection [2.4499092754102874]
合成データはモデル選択に有用であることを示す。
そこで本研究では,実領域に適合する合成誤差推定をキャリブレーションする新しい手法を提案する。
論文 参考訳(メタデータ) (2021-05-03T09:52:03Z) - Synthetic Data and Hierarchical Object Detection in Overhead Imagery [0.0]
衛星画像における低・ゼロサンプル学習を向上させるための新しい合成データ生成および拡張技術を開発した。
合成画像の有効性を検証するために,検出モデルと2段階モデルの訓練を行い,実際の衛星画像上で得られたモデルを評価する。
論文 参考訳(メタデータ) (2021-01-29T22:52:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。