論文の概要: MT-SNN: Enhance Spiking Neural Network with Multiple Thresholds
- arxiv url: http://arxiv.org/abs/2303.11127v2
- Date: Mon, 14 Oct 2024 06:33:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-15 15:06:03.332048
- Title: MT-SNN: Enhance Spiking Neural Network with Multiple Thresholds
- Title(参考訳): MT-SNN: 複数の閾値を持つスパイクニューラルネットワーク
- Authors: Xiaoting Wang, Yanxiang Zhang,
- Abstract要約: スパイキングニューラルネットワーク(SNN)は、従来のニューラルネットワーク(ANN)に代わる有望なエネルギー効率を提供する
精度損失を軽減し,SNNの精度を大幅に向上させるMultiple Threshold (MT) 手法を提案する。
CIFAR10, CIFAR100, ImageNet, DVS-CIFAR10データセットに対する実験により, MTモードがシングルスレッドSNNの性能を大幅に向上することを示した。
- 参考スコア(独自算出の注目度): 2.3531574267580035
- License:
- Abstract: Spiking neural networks (SNNs) present a promising energy efficient alternative to traditional Artificial Neural Networks (ANNs) due to their multiplication-free operations enabled by binarized intermediate activations. However, this binarization leads to precision loss, hindering the SNN performance. In this paper, we introduce Multiple Threshold (MT) approaches to significantly enhance SNN accuracy by mitigating precision loss. We propose two distinct modes for MT implementation, depending on the membrane update rule: parallel mode and cascade mode. MT-SNN models can be efficiently trained on standard hardwares like GPUs and TPUs, while retaining the multiplication-free advantage crucial for deployment on neuromorphic devices. Our extensive experiments on CIFAR10, CIFAR100, ImageNet, and DVS-CIFAR10 datasets demonstrate that both MT modes substantially improve the performance of single-threshold SNNs, achieving higher accuracy with fewer time steps and comparable energy consumption. Moreover, MT-SNNs outperform state-of-the-art (SOTA) results. Notably, with MT, a Parametric-Leaky-Integrate-Fire (PLIF) based ResNet-34 architecture reaches 72.17\% accuracy on ImageNet with a single time step, surpassing the previous SOTA by 2.75\% despite using 4 steps.
- Abstract(参考訳): スパイキングニューラルネットワーク(SNN)は、バイナライズされた中間活性化によって実現される乗算のない操作により、従来のニューラルネットワーク(ANN)に代わる有望なエネルギー効率の代替となる。
しかし、この双対化は精度の低下を招き、SNNの性能を損なう。
本稿では,SNNの精度を高精度に向上するために,Multiple Threshold(MT)アプローチを提案する。
本稿では,並列モードとカスケードモードの2つの異なるMT実装モードを提案する。
MT-SNNモデルは、GPUやTPUのような標準ハードウェア上で効率よくトレーニングできると同時に、ニューロモルフィックデバイスへのデプロイに不可欠な乗算不要のアドバンテージを維持することができる。
CIFAR10, CIFAR100, ImageNet, DVS-CIFAR10データセットに対する広範囲な実験により, MTモードがシングルスレッドSNNの性能を大幅に向上し, より少ない時間ステップと同等のエネルギー消費で高い精度が得られることが示された。
さらに、MT-SNNは最先端のSOTA(State-of-the-art)よりも優れています。
特に、MTでは、PLIF(Parametric-Leaky-Integrate-Fire)ベースのResNet-34アーキテクチャは、単一の時間ステップでImageNet上で72.17\%の精度に達し、4ステップでも以前のSOTAを2.75\%上回る。
関連論文リスト
- Scalable Mechanistic Neural Networks [52.28945097811129]
長い時間的シーケンスを含む科学機械学習応用のための拡張ニューラルネットワークフレームワークを提案する。
元のメカニスティックニューラルネットワーク (MNN) を再構成することにより、計算時間と空間の複雑さを、それぞれ、列長に関して立方体と二次体から線形へと減少させる。
大規模な実験により、S-MNNは元のMNNと精度で一致し、計算資源を大幅に削減した。
論文 参考訳(メタデータ) (2024-10-08T14:27:28Z) - TT-SNN: Tensor Train Decomposition for Efficient Spiking Neural Network
Training [27.565726483503838]
スパイキングニューラルネットワーク(TT-SNN)の列車分解について紹介する。
TT-SNNはトレーニング可能な重量分解によってモデルサイズを削減し、ストレージ、FLOP、レイテンシーを削減した。
また,典型的な逐次テンソル計算の代替として並列計算を提案する。
論文 参考訳(メタデータ) (2024-01-15T23:08:19Z) - Noise Adaptor in Spiking Neural Networks [4.568827262994048]
低遅延スパイクニューラルネットワーク(SNN)アルゴリズムは大きな関心を集めている。
低遅延SNNを構築する最も効率的な方法の1つは、事前訓練された低ビット人工ニューラルネットワーク(ANN)をSNNに変換することである。
SNNを低ビットのANNから変換すると、時折ノイズが発生する可能性がある。
論文 参考訳(メタデータ) (2023-12-08T16:57:01Z) - Online Training Through Time for Spiking Neural Networks [66.7744060103562]
スパイキングニューラルネットワーク(SNN)は、脳にインスパイアされたエネルギー効率のモデルである。
近年のトレーニング手法の進歩により、レイテンシの低い大規模タスクにおいて、ディープSNNを成功させることができた。
本稿では,BPTT から派生した SNN の時間的学習(OTTT)によるオンライントレーニングを提案する。
論文 参考訳(メタデータ) (2022-10-09T07:47:56Z) - Towards Lossless ANN-SNN Conversion under Ultra-Low Latency with Dual-Phase Optimization [30.098268054714048]
非同期離散イベントで動作するスパイキングニューラルネットワーク(SNN)は、スパース計算によるエネルギー効率の向上を示す。
ディープSNNを実装するための一般的なアプローチは、ANNの効率的なトレーニングとSNNの効率的な推論を組み合わせたANN-SNN変換である。
本稿では,SNNにおける負または過フロー残留膜電位の誤表現に起因する性能劣化を最初に同定する。
そこで我々は,変換誤差を量子化誤差,クリッピング誤差,残留膜電位表現誤差の3つの部分に分解した。
論文 参考訳(メタデータ) (2022-05-16T06:53:14Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Can Deep Neural Networks be Converted to Ultra Low-Latency Spiking
Neural Networks? [3.2108350580418166]
スパイクニューラルネットワーク(SNN)は、時間とともに分散されたバイナリスパイクを介して動作する。
SNNのためのSOTAトレーニング戦略は、非スパイキングディープニューラルネットワーク(DNN)からの変換を伴う
そこで本研究では,DNNと変換SNNの誤差を最小限に抑えながら,これらの分布を正確にキャプチャする新たなトレーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-12-22T18:47:45Z) - Sub-bit Neural Networks: Learning to Compress and Accelerate Binary
Neural Networks [72.81092567651395]
Sub-bit Neural Networks (SNN) は、BNNの圧縮と高速化に適した新しいタイプのバイナリ量子化設計である。
SNNは、微細な畳み込みカーネル空間におけるバイナリ量子化を利用するカーネル対応最適化フレームワークで訓練されている。
ビジュアル認識ベンチマークの実験とFPGA上でのハードウェア展開は、SNNの大きな可能性を検証する。
論文 参考訳(メタデータ) (2021-10-18T11:30:29Z) - FATNN: Fast and Accurate Ternary Neural Networks [89.07796377047619]
Ternary Neural Networks (TNN) は、完全な精度のニューラルネットワークよりもはるかに高速で、電力効率が高いため、多くの注目を集めている。
そこで本研究では、3次内積の計算複雑性を2。
性能ギャップを軽減するために,実装に依存した3次量子化アルゴリズムを精巧に設計する。
論文 参考訳(メタデータ) (2020-08-12T04:26:18Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Enabling Deep Spiking Neural Networks with Hybrid Conversion and Spike
Timing Dependent Backpropagation [10.972663738092063]
Spiking Neural Networks(SNN)は非同期離散イベント(スパイク)で動作する
本稿では,深層SNNのための計算効率のよいトレーニング手法を提案する。
我々は、SNN上のImageNetデータセットの65.19%のトップ1精度を250タイムステップで達成し、同様の精度で変換されたSNNに比べて10倍高速である。
論文 参考訳(メタデータ) (2020-05-04T19:30:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。