論文の概要: Cascading Hierarchical Networks with Multi-task Balanced Loss for
Fine-grained hashing
- arxiv url: http://arxiv.org/abs/2303.11274v1
- Date: Mon, 20 Mar 2023 17:08:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-21 14:21:26.220900
- Title: Cascading Hierarchical Networks with Multi-task Balanced Loss for
Fine-grained hashing
- Title(参考訳): 微細ハッシュのためのマルチタスクバランス損失を有する階層ネットワークのカスケード
- Authors: Xianxian Zeng, Yanjun Zheng
- Abstract要約: きめ細かいハッシュは従来のハッシュ問題よりも難しい。
本稿では,コンパクトでセマンティックなハッシュコードを学習するためのカスケードネットワークを提案する。
また,マルチタスク学習の損失を協調的にバランスさせる新しい手法を提案する。
- 参考スコア(独自算出の注目度): 1.6244541005112747
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: With the explosive growth in the number of fine-grained images in the
Internet era, it has become a challenging problem to perform fast and efficient
retrieval from large-scale fine-grained images. Among the many retrieval
methods, hashing methods are widely used due to their high efficiency and small
storage space occupation. Fine-grained hashing is more challenging than
traditional hashing problems due to the difficulties such as low inter-class
variances and high intra-class variances caused by the characteristics of
fine-grained images. To improve the retrieval accuracy of fine-grained hashing,
we propose a cascaded network to learn compact and highly semantic hash codes,
and introduce an attention-guided data augmentation method. We refer to this
network as a cascaded hierarchical data augmentation network. We also propose a
novel approach to coordinately balance the loss of multi-task learning. We do
extensive experiments on some common fine-grained visual classification
datasets. The experimental results demonstrate that our proposed method
outperforms several state-of-art hashing methods and can effectively improve
the accuracy of fine-grained retrieval. The source code is publicly available:
https://github.com/kaiba007/FG-CNET.
- Abstract(参考訳): インターネット時代の微粒化画像の爆発的増加に伴い,大規模微粒化画像からの高速かつ効率的な検索が難しい問題となっている。
多くの検索方法のうち、ハッシュ法は高い効率と小さなストレージスペースの占有のために広く使われている。
細粒度ハッシュは,低クラス間分散や細粒度画像の特性に起因するクラス内分散の難しさから,従来のハッシュ問題よりも困難である。
細粒度ハッシュの検索精度を向上させるため,コンパクトで意味性の高いハッシュ符号を学習するカスケードネットワークを提案し,注意誘導型データ拡張手法を提案する。
本稿では,このネットワークを階層型データ拡張ネットワークと呼ぶ。
また,マルチタスク学習の損失を協調的にバランスさせる新しい手法を提案する。
一般的な視覚分類データセットについて広範な実験を行った。
実験の結果,提案手法は最先端のハッシュ手法を上回っており,細粒度検索の精度を効果的に向上できることがわかった。
ソースコードはhttps://github.com/kaiba007/fg-cnet。
関連論文リスト
- CoopHash: Cooperative Learning of Multipurpose Descriptor and Contrastive Pair Generator via Variational MCMC Teaching for Supervised Image Hashing [42.67510119856105]
GAN(Generative Adversarial Networks)のような生成モデルは、画像ハッシュモデルで合成データを生成することができる。
GANは訓練が難しいため、ハッシュアプローチが生成モデルとハッシュ関数を共同で訓練するのを防ぐことができる。
本稿では,エネルギーをベースとした協調学習に基づく新しい協調ハッシュネットワークを提案する。
論文 参考訳(メタデータ) (2022-10-09T15:42:36Z) - PHPQ: Pyramid Hybrid Pooling Quantization for Efficient Fine-Grained
Image Retrieval [68.05570413133462]
マルチレベル特徴量から微細なセマンティック情報を捕捉・保存するためのピラミッドハイブリッドポーリング量子化(PHPQ)モジュールを提案する。
CUB-200-2011とStanford Dogsの2つの広く使用されている公開ベンチマークの実験では、PHPQが最先端の手法より優れていることが示されている。
論文 参考訳(メタデータ) (2021-09-11T07:21:02Z) - CIMON: Towards High-quality Hash Codes [63.37321228830102]
我々はtextbfComprehensive stextbfImilarity textbfMining と ctextbfOnsistency leartextbfNing (CIMON) という新しい手法を提案する。
まず、グローバルな洗練と類似度統計分布を用いて、信頼性とスムーズなガイダンスを得る。第二に、意味的整合性学習とコントラスト的整合性学習の両方を導入して、乱不変と差別的ハッシュコードの両方を導出する。
論文 参考訳(メタデータ) (2020-10-15T14:47:14Z) - Deep Reinforcement Learning with Label Embedding Reward for Supervised
Image Hashing [85.84690941656528]
深層型ハッシュのための新しい意思決定手法を提案する。
我々はBose-Chaudhuri-Hocquenghem符号で定義された新しいラベル埋め込み報酬を用いて、深いQ-ネットワークを学ぶ。
我々の手法は、様々なコード長で最先端の教師付きハッシュ法より優れています。
論文 参考訳(メタデータ) (2020-08-10T09:17:20Z) - ExchNet: A Unified Hashing Network for Large-Scale Fine-Grained Image
Retrieval [43.41089241581596]
そこで我々は, きめ細かい画像のためのコンパクトなバイナリコードを生成するために, 新たなきめ細かなハッシュトピックについて検討した。
我々は、ExchNetと呼ばれる、エンドツーエンドのトレーニング可能な統合ネットワークを提案する。
提案手法は,5つのきめ細かいデータセットに対して,最先端の汎用ハッシュ法より一貫して優れている。
論文 参考訳(メタデータ) (2020-08-04T07:01:32Z) - Deep Hashing with Hash-Consistent Large Margin Proxy Embeddings [65.36757931982469]
画像ハッシュコードは、分類または検索のために訓練された畳み込みニューラルネットワーク(CNN)の埋め込みをバイナライズすることによって生成される。
この曖昧さを解消するために、固定されたプロキシ(CNN分類層の重み)の使用が提案されている。
得られたHCLMプロキシはハッシュ単位の飽和を促進することが示され、小さな二項化誤差が保証される。
論文 参考訳(メタデータ) (2020-07-27T23:47:43Z) - Dual-level Semantic Transfer Deep Hashing for Efficient Social Image
Retrieval [35.78137004253608]
ソーシャルネットワークは膨大な量のユーザ共有画像を保存し、配布する。
ディープハッシュは、大規模社会画像検索をサポートする効率的なインデックス化技術である。
既存の手法は、大量のディープニューラルネットワークパラメータを最適化する際に、深刻なセマンティックな不足に悩まされる。
本稿では,DSTDH(Dual-level Semantic Transfer Deep Hashing)法を提案する。
論文 参考訳(メタデータ) (2020-06-10T01:03:09Z) - Reinforcing Short-Length Hashing [61.75883795807109]
既存の手法は、非常に短いハッシュコードを用いた検索性能が劣っている。
本研究では, 短寿命ハッシュ(RSLH)を改良する新しい手法を提案する。
本稿では,ハッシュ表現とセマンティックラベルの相互再構成を行い,セマンティック情報を保存する。
3つの大規模画像ベンチマークの実験は、様々な短いハッシュシナリオ下でのRSLHの優れた性能を示す。
論文 参考訳(メタデータ) (2020-04-24T02:23:52Z) - A Survey on Deep Hashing Methods [52.326472103233854]
最寄りの検索は、データベースからクエリまでの距離が最小のサンプルを取得することを目的としている。
ディープラーニングの発展により、ディープハッシュ法は従来の方法よりも多くの利点を示す。
深い教師付きハッシュは、ペアワイズ法、ランキングベースの方法、ポイントワイズ法、量子化に分類される。
深い教師なしハッシュは、類似性再構築に基づく方法、擬似ラベルに基づく方法、予測自由な自己教師あり学習に基づく方法に分類される。
論文 参考訳(メタデータ) (2020-03-04T08:25:15Z) - Image Hashing by Minimizing Discrete Component-wise Wasserstein Distance [12.968141477410597]
競合するオートエンコーダは、バランスよく高品質なハッシュコードを生成する堅牢で局所性を保存するハッシュ関数を暗黙的に学習できることが示されている。
既存の逆ハッシュ法は、大規模な画像検索に非効率である。
本稿では,サンプル要求と計算コストを大幅に低減した,新しい対向型オートエンコーダハッシュ手法を提案する。
論文 参考訳(メタデータ) (2020-02-29T00:22:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。