論文の概要: Neural networks trained on synthetically generated crystals can extract
structural information from ICSD powder X-ray diffractograms
- arxiv url: http://arxiv.org/abs/2303.11699v3
- Date: Tue, 19 Sep 2023 07:50:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-20 20:11:46.958591
- Title: Neural networks trained on synthetically generated crystals can extract
structural information from ICSD powder X-ray diffractograms
- Title(参考訳): 合成結晶を用いたニューラルネットワークによるICSD粉末X線回折法による構造情報の抽出
- Authors: Henrik Schopmans, Patrick Reiser, Pascal Friederich
- Abstract要約: 機械学習技術は粉末X線回折画像から構造情報を抽出するのに成功している。
本稿では,各空間群の対称性演算を用いて,ランダムな座標で合成結晶を生成する方法を提案する。
我々は,1時間に数百万のオンザフライ生成された合成ディフラクトグラムに対して,Deep ResNetライクなモデルのオンライントレーニングを実演する。
- 参考スコア(独自算出の注目度): 0.6906005491572401
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning techniques have successfully been used to extract structural
information such as the crystal space group from powder X-ray diffractograms.
However, training directly on simulated diffractograms from databases such as
the ICSD is challenging due to its limited size, class-inhomogeneity, and bias
toward certain structure types. We propose an alternative approach of
generating synthetic crystals with random coordinates by using the symmetry
operations of each space group. Based on this approach, we demonstrate online
training of deep ResNet-like models on up to a few million unique on-the-fly
generated synthetic diffractograms per hour. For our chosen task of space group
classification, we achieved a test accuracy of 79.9% on unseen ICSD structure
types from most space groups. This surpasses the 56.1% accuracy of the current
state-of-the-art approach of training on ICSD crystals directly. Our results
demonstrate that synthetically generated crystals can be used to extract
structural information from ICSD powder diffractograms, which makes it possible
to apply very large state-of-the-art machine learning models in the area of
powder X-ray diffraction. We further show first steps toward applying our
methodology to experimental data, where automated XRD data analysis is crucial,
especially in high-throughput settings. While we focused on the prediction of
the space group, our approach has the potential to be extended to related tasks
in the future.
- Abstract(参考訳): 機械学習技術は粉末x線回折から結晶空間群などの構造情報を抽出するのに成功している。
しかし、ICSDのようなデータベースからシミュレーションされたディフラクトグラムを直接トレーニングすることは、そのサイズ、クラス不均一性、特定の構造タイプに対するバイアスのために困難である。
本稿では,各空間群の対称性演算を用いてランダム座標を持つ合成結晶を生成する方法を提案する。
このアプローチに基づいて,1時間に数百万のオンザフライ生成された合成ディフラクトグラムに対して,Deep ResNetライクなモデルのオンライントレーニングを実演する。
選択した空間群分類のタスクに対して、ほとんどの空間群からの未確認ICSD構造タイプに対して、79.9%の精度を達成した。
これはICSD結晶のトレーニングにおける現在の最先端のアプローチの56.1%を超える。
その結果, 合成した結晶は, icd粉体回折から構造情報を抽出でき, 粉体x線回折の領域において, 最先端の機械学習モデルを適用することが可能となった。
また、特に高スループット環境では、自動XRDデータ分析が不可欠である実験データに適用するための第一歩を示す。
宇宙群の予測に焦点をあてる一方で、我々のアプローチは将来、関連するタスクにまで拡張される可能性がある。
関連論文リスト
- Learning and Controlling Silicon Dopant Transitions in Graphene using
Scanning Transmission Electron Microscopy [58.51812955462815]
単層炭素原子上のシリコン原子の遷移ダイナミクスを機械学習で決定する手法を提案する。
データサンプルは、ニューラルネットワークをトレーニングして遷移確率を予測するために、シンボリック表現を生成するために処理され、フィルタリングされる。
これらの学習された遷移ダイナミクスを利用すれば、格子全体に1つのシリコン原子を誘導し、あらかじめ決定された目標目的地へと導くことができる。
論文 参考訳(メタデータ) (2023-11-21T21:51:00Z) - Latent Conservative Objective Models for Data-Driven Crystal Structure
Prediction [62.36797874900395]
計算化学において、結晶構造予測は最適化問題である。
この問題に対処する1つのアプローチは、密度汎関数理論(DFT)に基づいてシミュレータを構築し、続いてシミュレーションで探索を実行することである。
我々は,LCOM(最近の保守的客観モデル)と呼ばれる我々の手法が,構造予測の成功率の観点から,最も優れたアプローチと同等に機能することを示す。
論文 参考訳(メタデータ) (2023-10-16T04:35:44Z) - Probabilistic Phase Labeling and Lattice Refinement for Autonomous
Material Research [20.78180998995325]
確率的XRD位相ラベリングのための効率的なアルゴリズムであるCrystalShiftを提案する。
我々は、CrystalShiftが頑健な確率を提供し、合成および実験データセットにおける既存の手法より優れていることを実証した。
効率的な位相マッピングに加えて、CrystalShiftは材料の構造パラメータに関する定量的な洞察を提供する。
論文 参考訳(メタデータ) (2023-08-15T17:38:38Z) - Exploring Supervised Machine Learning for Multi-Phase Identification and
Quantification from Powder X-Ray Diffraction Spectra [1.0660480034605242]
粉体X線回折分析は材料特性評価法の重要な構成要素である。
深層学習は、X線スペクトルから結晶学パラメータと特徴を予測するための主要な焦点となっている。
ここでは,多ラベル結晶相同定のための深層学習の代わりに,従来の教師付き学習アルゴリズムに関心がある。
論文 参考訳(メタデータ) (2022-11-16T00:36:13Z) - Tracking perovskite crystallization via deep learning-based feature
detection on 2D X-ray scattering data [137.47124933818066]
本稿では,より高速なR-CNN深層学習アーキテクチャに基づくX線回折画像の自動解析パイプラインを提案する。
有機-無機ペロブスカイト構造の結晶化をリアルタイムに追跡し, 2つの応用で検証した。
論文 参考訳(メタデータ) (2022-02-22T15:39:00Z) - Disentangling multiple scattering with deep learning: application to
strain mapping from electron diffraction patterns [48.53244254413104]
我々は、高非線形電子回折パターンを定量的構造因子画像に変換するために、FCU-Netと呼ばれるディープニューラルネットワークを実装した。
結晶構造の異なる組み合わせを含む20,000以上のユニークな動的回折パターンを用いてFCU-Netを訓練した。
シミュレーションされた回折パターンライブラリ、FCU-Netの実装、訓練されたモデルの重み付けは、オープンソースリポジトリで自由に利用可能です。
論文 参考訳(メタデータ) (2022-02-01T03:53:39Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z) - On Open and Strong-Scaling Tools for Atom Probe Crystallography:
High-Throughput Methods for Indexing Crystal Structure and Orientation [0.0]
体積結晶構造インデクシングと配向マッピングは空間相関の定量的研究のための重要なデータ処理ステップである。
原子プローブトモグラフィー(APT)実験では、多くのAPTデータセットが大きなノイズを含む可能性があるため、測定されたパターンと解析されたパターンの比較戦略はより堅牢である。
複数の位相を持つナノ結晶APTデータセットにおける結晶構造と結晶配向の同定と自動同定のためのオープンソースソフトウェアツールの開発を可能にする方法について報告する。
論文 参考訳(メタデータ) (2020-09-01T22:50:03Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
35,000以上のニューラルネットワークモデルをトレーニングし、一般的な成果化技術を駆使しています。
RNA-seqは128以上のサブセットであっても非常に冗長で情報的であることがわかった。
論文 参考訳(メタデータ) (2020-04-30T20:42:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。