論文の概要: Probabilistic Domain Adaptation for Biomedical Image Segmentation
- arxiv url: http://arxiv.org/abs/2303.11790v1
- Date: Tue, 21 Mar 2023 12:17:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-22 15:16:35.670883
- Title: Probabilistic Domain Adaptation for Biomedical Image Segmentation
- Title(参考訳): 生体画像分割のための確率的領域適応
- Authors: Anwai Archit and Constantin Pape
- Abstract要約: 本稿では,確率的ドメイン適応手法,自己学習アプローチ,確率的UNetを提案する。
本研究では, バイオメディカルセグメンテーションのための3つの課題領域適応課題について, 共同および個別のソースターゲットトレーニング戦略について検討し, 評価を行った。
- 参考スコア(独自算出の注目度): 2.5382095320488665
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Segmentation is a key analysis tasks in biomedical imaging. Given the many
different experimental settings in this field, the lack of generalization
limits the use of deep learning in practice. Domain adaptation is a promising
remedy: it trains a model for a given task on a source dataset with labels and
adapts it to a target dataset without additional labels. We introduce a
probabilistic domain adaptation method, building on self-training approaches
and the Probabilistic UNet. We use the latter to sample multiple segmentation
hypothesis to implement better pseudo-label filtering. We further study joint
and separate source-target training strategies and evaluate our method on three
challenging domain adaptation tasks for biomedical segmentation.
- Abstract(参考訳): セグメンテーションはバイオメディカルイメージングにおける重要な分析課題である。
この分野における様々な実験的な設定を考えると、一般化の欠如は、実際にディープラーニングを使うことを制限する。
ラベル付きソースデータセット上で与えられたタスクのモデルをトレーニングし、追加のラベルなしでターゲットデータセットに適応させる。
本稿では,確率的ドメイン適応手法,自己学習アプローチ,確率的UNetを提案する。
後者を用いて、より優れた擬似ラベルフィルタリングを実現するために多重分割仮説をサンプリングする。
さらに,バイオメディカルセグメンテーションのための3つの挑戦的領域適応課題について,共同およびソースターゲットトレーニング戦略について検討し,評価を行った。
関連論文リスト
- Domain Adaptation for Medical Image Segmentation using
Transformation-Invariant Self-Training [7.738197566031678]
領域適応型変換不変自己学習(TI-ST)のための半教師付き学習戦略を提案する。
提案手法は,画素単位の擬似ラベルの信頼性を評価し,自己学習中の信頼できない検出をフィルタリングする。
論文 参考訳(メタデータ) (2023-07-31T13:42:56Z) - Bidirectional Domain Mixup for Domain Adaptive Semantic Segmentation [73.3083304858763]
本稿では,ドメイン適応型セマンティックセグメンテーションタスクにおけるミックスアップの影響を系統的に研究する。
具体的には、ドメインミックスアップをカットとペーストという2ステップで実現します。
フレームワークの主なコンポーネントを実証的に検証するために、広範囲にわたるアブレーション実験を行います。
論文 参考訳(メタデータ) (2023-03-17T05:22:44Z) - Active Learning Based Domain Adaptation for Tissue Segmentation of
Histopathological Images [1.4724454726700604]
対象ドメインからラベル付きデータの小さなセットを使用して,次にラベル付けする最も情報性の高いサンプルを選択する,事前学習されたディープニューラルネットワークを提案する。
従来のF1スコアを用いた教師あり学習手法と比較して,本手法はラベル付きサンプルよりもはるかに少ない性能を示す。
論文 参考訳(メタデータ) (2023-03-09T13:03:01Z) - Domain Adaptation Principal Component Analysis: base linear method for
learning with out-of-distribution data [55.41644538483948]
ドメイン適応は現代の機械学習において一般的なパラダイムである。
ドメイン適応主成分分析(DAPCA)という手法を提案する。
DAPCAは、領域適応タスクの解決に有用な線形化データ表現を見つける。
論文 参考訳(メタデータ) (2022-08-28T21:10:56Z) - Unsupervised Domain Adaptation Using Feature Disentanglement And GCNs
For Medical Image Classification [5.6512908295414]
本稿では,グラフニューラルネットワークを用いた教師なし領域適応手法を提案する。
分布シフトを伴う2つの挑戦的医用画像データセットの分類法について検討した。
実験により,本手法は他の領域適応法と比較して最先端の結果が得られることが示された。
論文 参考訳(メタデータ) (2022-06-27T09:02:16Z) - Labeling Where Adapting Fails: Cross-Domain Semantic Segmentation with
Point Supervision via Active Selection [81.703478548177]
セマンティックセグメンテーションに特化したトレーニングモデルは、大量のピクセル単位のアノテートデータを必要とする。
教師なしドメイン適応手法は、ラベル付きソースとラベルなしターゲットデータとの間の特徴分布の整合化を目的としている。
以前の研究は、対象データにスパース単一ピクセルアノテーションという形で、人間のインタラクションをこのプロセスに含めようと試みていた。
アクティブな選択による注釈付きポイントを用いた意味的セグメンテーションのための新しいドメイン適応フレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-01T01:52:28Z) - Target and Task specific Source-Free Domain Adaptive Image Segmentation [73.78898054277538]
ソースフリー領域適応画像分割のための2段階のアプローチを提案する。
我々は,高エントロピー領域を抑えつつ,ターゲット固有の擬似ラベルを生成することに注力する。
第2段階では、タスク固有の表現にネットワークを適用することに重点を置いている。
論文 参考訳(メタデータ) (2022-03-29T17:50:22Z) - Deep learning based domain adaptation for mitochondria segmentation on
EM volumes [5.682594415267948]
対象領域におけるミトコンドリアセグメンテーションを改善するための3つの非教師なし領域適応戦略を提案する。
そこで本研究では,ソースドメイン内でのみ得られる形態的事前条件に基づいて,新たな学習停止基準を提案する。
評価ラベルがない場合、提案した形態素に基づく計量をモニタリングすることは、トレーニングプロセスを止めて平均最適モデルを選択するための直感的で効果的な方法である。
論文 参考訳(メタデータ) (2022-02-22T09:49:25Z) - Harnessing Uncertainty in Domain Adaptation for MRI Prostate Lesion
Segmentation [15.919637739630353]
我々は, 癌評価のための取得最適化プロトコルを含む, よりリッチなMRIモダリティである mp-MRI から VERDICT への変換を検討する。
以上の結果から,単純なCycleGANベースラインを併用したタンデムを用いて,対象領域の画像表現を体系的により優れた画像表現で抽出できることが示唆された。
論文 参考訳(メタデータ) (2020-10-14T21:30:27Z) - A Review of Single-Source Deep Unsupervised Visual Domain Adaptation [81.07994783143533]
大規模ラベル付きトレーニングデータセットにより、ディープニューラルネットワークは、幅広いベンチマークビジョンタスクを拡張できるようになった。
多くのアプリケーションにおいて、大量のラベル付きデータを取得するのは非常に高価で時間を要する。
限られたラベル付きトレーニングデータに対処するため、大規模ラベル付きソースドメインでトレーニングされたモデルを、疎ラベルまたは未ラベルのターゲットドメインに直接適用しようと試みている人も多い。
論文 参考訳(メタデータ) (2020-09-01T00:06:50Z) - Phase Consistent Ecological Domain Adaptation [76.75730500201536]
意味的セグメンテーション(意味的セグメンテーション)の課題に焦点をあてる。そこでは、注釈付き合成データが多用されるが、実際のデータへのアノテートは困難である。
視覚心理学に触発された最初の基準は、2つの画像領域間の地図が位相保存であることである。
第2の基準は、照明剤や撮像センサーの特性に関わらず、その画像に現れる環境統計、またはシーン内の規則を活用することを目的としている。
論文 参考訳(メタデータ) (2020-04-10T06:58:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。