Quantum memories for fundamental science in space
- URL: http://arxiv.org/abs/2303.11810v1
- Date: Tue, 21 Mar 2023 12:52:22 GMT
- Title: Quantum memories for fundamental science in space
- Authors: Jan-Michael Mol, Luisa Esguerra, Matthias Meister, David Edward
Bruschi, Andreas Wolfgang Schell, Janik Wolters, Lisa W\"orner
- Abstract summary: We promote the case of exploiting quantum memories for fundamental physics in space.
We discuss both distinct experiments as well as potential quantum memory platforms and their performance.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Investigating and verifying the connections between the foundations of
quantum mechanics and general relativity will require extremely sensitive
quantum experiments. To provide ultimate insight into this fascinating area of
physics, the realization of dedicated experiments in space will sooner or later
become a necessity. Quantum technologies, and among them quantum memories in
particular, are providing novel approaches to reach conclusive experimental
results due to their advanced state of development backed by decades of
progress. Storing quantum states for prolonged time will make it possible to
study Bell tests on astronomical baselines, to increase measurement precision
for investigations of gravitational effects on quantum systems, or enable
distributed networks of quantum sensors and clocks. We here promote the case of
exploiting quantum memories for fundamental physics in space, and discuss both
distinct experiments as well as potential quantum memory platforms and their
performance.
Related papers
- Toward coherent quantum computation of scattering amplitudes with a
measurement-based photonic quantum processor [0.0]
We discuss the feasibility of using quantum optical simulation for studying scattering observables that are presently inaccessible via lattice QCD.
We show that recent progress in measurement-based photonic quantum computing can be leveraged to provide deterministic generation of required exotic gates.
arXiv Detail & Related papers (2023-12-19T21:36:07Z) - Massive quantum systems as interfaces of quantum mechanics and gravity [0.0]
The traditional view from particle physics is that quantum gravity effects should only become detectable at extremely high energies and small length scales.
In recent decades, the size and mass of quantum systems that can be controlled in the laboratory have reached unprecedented scales.
This review focuses on proposals where massive quantum systems act as interfaces between quantum mechanics and gravity.
arXiv Detail & Related papers (2023-11-15T18:58:44Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing.
Over the past two decades, quantum optical memories with high fidelity, high efficiencies, long storage times, and promising multiplexing capabilities have been developed.
arXiv Detail & Related papers (2023-04-19T03:18:51Z) - The Physics of Quantum Information [0.0]
I review four intertwined themes encompassed by this topic: Quantum computer science, quantum hardware, quantum matter, and quantum gravity.
In the longer term, controlling highly complex quantum matter will open the door to profound scientific advances and powerful new technologies.
arXiv Detail & Related papers (2022-08-17T04:35:36Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - Testing the foundations of quantum physics in space Interferometric and
non-interferometric tests with Large Particles [0.0]
We focus on the promises coming from the combination of quantum technologies and space science to test the foundations of quantum physics.
In particular, we survey the field of mesoscopic superpositions of nanoparticles and the potential of interferometric and non-interferometric experiments in space.
We offer an ab-initio estimate of the potential of space-based interferometry with some of the largest systems ever considered and show that there is room for tests of quantum mechanics at an unprecedented level of detail.
arXiv Detail & Related papers (2021-06-09T19:28:49Z) - Experimental progress on quantum coherence: detection, quantification,
and manipulation [55.41644538483948]
Recently there has been significant interest in the characterization of quantum coherence as a resource.
We discuss the main platforms for realizing the experiments: linear optics, nuclear magnetic resonance, and superconducting systems.
We also review experiments exploring the connections between coherence and uncertainty relations, path information, and coherence of operations and measurements.
arXiv Detail & Related papers (2021-05-14T14:30:47Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.