論文の概要: Materials Discovery with Extreme Properties via Reinforcement Learning-Guided Combinatorial Chemistry
- arxiv url: http://arxiv.org/abs/2303.11833v2
- Date: Tue, 7 May 2024 15:07:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 20:42:53.448920
- Title: Materials Discovery with Extreme Properties via Reinforcement Learning-Guided Combinatorial Chemistry
- Title(参考訳): 強化学習誘導型コンビニアル化学による極物性材料発見
- Authors: Hyunseung Kim, Haeyeon Choi, Dongju Kang, Won Bo Lee, Jonggeol Na,
- Abstract要約: ルールベースの分子デザイナは、その後の分子フラグメントを選択してターゲット分子を得るための訓練されたポリシーによって駆動される。
極端に標的となる7つの性質にぶつかる分子の発見を目的とした実験で、我々のモデルはターゲットを隠蔽する分子の1,315個を発見した。
分子断片の結合規則の下で生成される全ての分子が100%化学的に有効であることが確認されている。
- 参考スコア(独自算出の注目度): 0.23301643766310373
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The goal of most materials discovery is to discover materials that are superior to those currently known. Fundamentally, this is close to extrapolation, which is a weak point for most machine learning models that learn the probability distribution of data. Herein, we develop reinforcement learning-guided combinatorial chemistry, which is a rule-based molecular designer driven by trained policy for selecting subsequent molecular fragments to get a target molecule. Since our model has the potential to generate all possible molecular structures that can be obtained from combinations of molecular fragments, unknown molecules with superior properties can be discovered. We theoretically and empirically demonstrate that our model is more suitable for discovering better compounds than probability distribution-learning models. In an experiment aimed at discovering molecules that hit seven extreme target properties, our model discovered 1,315 of all target-hitting molecules and 7,629 of five target-hitting molecules out of 100,000 trials, whereas the probability distribution-learning models failed. Moreover, it has been confirmed that every molecule generated under the binding rules of molecular fragments is 100% chemically valid. To illustrate the performance in actual problems, we also demonstrate that our models work well on two practical applications: discovering protein docking molecules and HIV inhibitors.
- Abstract(参考訳): ほとんどの物質発見の目標は、現在知られている物質よりも優れた物質を発見することである。
これは基本的に、データの確率分布を学習するほとんどの機械学習モデルにとって弱い点である外挿に近い。
そこで本研究では,分子フラグメントの選択を訓練した規則に基づく分子設計法である強化学習誘導複合化学を開発する。
我々のモデルは、分子断片の組み合わせから得られる全ての可能な分子構造を生成することができるため、優れた性質を持つ未知の分子が発見できる。
我々は,確率分布学習モデルよりも,より優れた化合物の発見に適していることを理論的,実証的に実証した。
7つの極端目標特性に当たった分子の発見を目的とした実験で、我々のモデルでは、標的に当たった分子のうち1,315個、標的に当たった分子のうち7,629個が検出されたが、確率分布学習モデルは失敗した。
さらに、分子断片の結合規則の下で生成される全ての分子が100%化学的に有効であることが確認されている。
実際の問題の性能を説明するために,タンパク質ドッキング分子の発見とHIV阻害薬の発見という,2つの実用的応用に,我々のモデルが有効であることを実証した。
関連論文リスト
- STRIDE: Structure-guided Generation for Inverse Design of Molecules [0.24578723416255752]
$textbfSTRIDE$は、既知の分子によって誘導される無条件生成モデルを持つ新規分子を生成する生成分子ワークフローである。
生成分子は、平均21.7%低い合成アクセシビリティスコアを持ち、生成分子の5.9%のイオン化ポテンシャルを誘導する。
論文 参考訳(メタデータ) (2023-11-06T08:22:35Z) - Diffusing on Two Levels and Optimizing for Multiple Properties: A Novel
Approach to Generating Molecules with Desirable Properties [33.2976176283611]
本稿では,分子を望ましい性質で生成する新しい手法を提案する。
望ましい分子断片を得るため,我々は新しい電子効果に基づくフラグメンテーション法を開発した。
提案手法により生成する分子は, 従来のSOTAモデルより有効, 特異性, 新規性, Fr'echet ChemNet Distance (FCD), QED, PlogP を有することを示す。
論文 参考訳(メタデータ) (2023-10-05T11:43:21Z) - Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
化学的・生物学的性質が望ましい分子の生成は、薬物発見にとって重要である。
本稿では,分子の結合分布とその特性を捉える確率的生成モデルを提案する。
本手法は種々の分子設計タスクにおいて非常に強力な性能を発揮する。
論文 参考訳(メタデータ) (2023-06-09T03:04:21Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
我々は, 複雑な分子特性を符号化した分子埋め込みを開発し, 数発の分子特性予測の性能を向上させる。
我々の手法は大量の合成データ、すなわち分子ドッキング計算の結果を利用する。
複数の分子特性予測ベンチマークでは、埋め込み空間からのトレーニングにより、マルチタスク、MAML、プロトタイプラーニング性能が大幅に向上する。
論文 参考訳(メタデータ) (2023-02-04T01:32:40Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
本稿では,分子グラフとその意味的関連テキストデータから事前学習した分子マルチモーダル基礎モデルを提案する。
我々のモデルは、生物学、化学、材料、環境、医学などの分野において、AIを動力とする分野に幅広い影響を与えるだろうと考えています。
論文 参考訳(メタデータ) (2022-09-12T00:56:57Z) - Exploring Chemical Space with Score-based Out-of-distribution Generation [57.15855198512551]
生成微分方程式(SDE)にアウト・オブ・ディストリビューション制御を組み込んだスコアベース拡散方式を提案する。
いくつかの新しい分子は現実世界の薬物の基本的な要件を満たしていないため、MOODは特性予測器からの勾配を利用して条件付き生成を行う。
我々はMOODがトレーニング分布を超えて化学空間を探索できることを実験的に検証し、既存の方法で見いだされた分子、そして元のトレーニングプールの上位0.01%までも生成できることを実証した。
論文 参考訳(メタデータ) (2022-06-06T06:17:11Z) - Scalable Fragment-Based 3D Molecular Design with Reinforcement Learning [68.8204255655161]
分子構築に階層的エージェントを用いるスケーラブルな3D設計のための新しいフレームワークを提案する。
様々な実験において、エネルギーのみを考慮に入れたエージェントが、100以上の原子を持つ分子を効率よく生成できることが示されている。
論文 参考訳(メタデータ) (2022-02-01T18:54:24Z) - Fragment-based molecular generative model with high generalization
ability and synthetic accessibility [0.0]
本稿では, ターゲット特性を持つ新規分子を設計するフラグメントに基づく分子生成モデルを提案する。
我々のモデルの重要な特徴は、プロパティ制御とフラグメントタイプの観点からの高度な一般化能力である。
モデルでは,複数のターゲット特性を同時に制御した分子を高い成功率で生成できることを示す。
論文 参考訳(メタデータ) (2021-11-25T04:44:37Z) - Flexible dual-branched message passing neural network for quantum
mechanical property prediction with molecular conformation [16.08677447593939]
メッセージパッシングフレームワークに基づく分子特性予測のための二重分岐ニューラルネットワークを提案する。
本モデルでは,様々なスケールで異種分子の特徴を学習し,予測対象に応じて柔軟に学習する。
論文 参考訳(メタデータ) (2021-06-14T10:00:39Z) - Advanced Graph and Sequence Neural Networks for Molecular Property
Prediction and Drug Discovery [53.00288162642151]
計算モデルや分子表現にまたがる包括的な機械学習ツール群であるMoleculeKitを開発した。
これらの表現に基づいて構築されたMoeculeKitには、ディープラーニングと、グラフとシーケンスデータのための従来の機械学習方法の両方が含まれている。
オンラインおよびオフラインの抗生物質発見と分子特性予測のタスクの結果から、MoneculeKitは以前の方法よりも一貫した改善を実現していることがわかる。
論文 参考訳(メタデータ) (2020-12-02T02:09:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。