論文の概要: Dens-PU: PU Learning with Density-Based Positive Labeled Augmentation
- arxiv url: http://arxiv.org/abs/2303.11848v1
- Date: Tue, 21 Mar 2023 13:48:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-22 14:58:55.989161
- Title: Dens-PU: PU Learning with Density-Based Positive Labeled Augmentation
- Title(参考訳): Dens-PU: 密度に基づく正のラベル付き強化によるPU学習
- Authors: Vasileios Sevetlidis and George Pavlidis and Spyridon Mouroutsos and
Antonios Gasteratos
- Abstract要約: 本研究では,異常検出戦略に基づくPU学習問題の解法を提案する。
正ラベルデータから抽出された潜時符号化を線形に組み合わせて新しいサンプルを取得する。
正ラベル付きデータの密度に依存してDens-PUと命名されたこの手法は、ベンチマーク画像データセットを用いて評価された。
- 参考スコア(独自算出の注目度): 1.6784537124034202
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study proposes a novel approach for solving the PU learning problem
based on an anomaly-detection strategy. Latent encodings extracted from
positive-labeled data are linearly combined to acquire new samples. These new
samples are used as embeddings to increase the density of positive-labeled data
and, thus, define a boundary that approximates the positive class. The further
a sample is from the boundary the more it is considered as a negative sample.
Once a set of negative samples is obtained, the PU learning problem reduces to
binary classification. The approach, named Dens-PU due to its reliance on the
density of positive-labeled data, was evaluated using benchmark image datasets,
and state-of-the-art results were attained.
- Abstract(参考訳): 本研究では,異常検出戦略に基づくPU学習問題の解法を提案する。
正ラベルデータから抽出した潜在符号化を線形結合して新しいサンプルを得る。
これらの新しいサンプルは、正のラベル付きデータの密度を上げる埋め込みとして使われ、したがって、正のクラスに近似する境界を定義する。
さらにサンプルが境界からのものであるほど、負のサンプルと見なされる。
一組の負のサンプルが得られると、PU学習問題は二項分類に還元される。
正のラベルデータの密度に依存することからdens-puと名づけたこの手法をベンチマーク画像データセットを用いて評価し,最新の結果を得た。
関連論文リスト
- From Overfitting to Robustness: Quantity, Quality, and Variety Oriented Negative Sample Selection in Graph Contrastive Learning [38.87932592059369]
グラフコントラスト学習(GCL)は、ノードの埋め込みを学習する正負の学習と対比することを目的としている。
ノード分類下流タスクにおける有意義な埋め込み学習において, 正のサンプルと比較して, 負のサンプルの変化, 量, 品質が重要な役割を担っている。
本研究では, 負のサンプルの品質, バリエーション, 量について包括的に検討し, 新たな累積サンプル選択法を提案する。
論文 参考訳(メタデータ) (2024-06-21T10:47:26Z) - Learning A Disentangling Representation For PU Learning [18.94726971543125]
本稿では、ラベルのないデータを2つのクラスタに投影するロス関数を用いて、ニューラルネットワークに基づくデータ表現を学習することを提案する。
提案手法の性能向上を実証する PU データのシミュレーション実験を行った。
論文 参考訳(メタデータ) (2023-10-05T18:33:32Z) - Robust Positive-Unlabeled Learning via Noise Negative Sample
Self-correction [48.929877651182885]
正および未ラベルのデータから学ぶことは、文学における正の未ラベル(PU)学習として知られている。
本研究では,人間の学習の性質を動機とした学習戦略を取り入れた,新しい堅牢なPU学習手法を提案する。
論文 参考訳(メタデータ) (2023-08-01T04:34:52Z) - Dist-PU: Positive-Unlabeled Learning from a Label Distribution
Perspective [89.5370481649529]
本稿では,PU学習のためのラベル分布視点を提案する。
そこで本研究では,予測型と基底型のラベル分布間のラベル分布の整合性を追求する。
提案手法の有効性を3つのベンチマークデータセットで検証した。
論文 参考訳(メタデータ) (2022-12-06T07:38:29Z) - Incorporating Semi-Supervised and Positive-Unlabeled Learning for
Boosting Full Reference Image Quality Assessment [73.61888777504377]
フル参照(FR)画像品質評価(IQA)は、その知覚的差異をプリズム品質基準で測定することにより、歪み画像の視覚的品質を評価する。
ラベルなしデータは、画像劣化または復元プロセスから容易に収集することができ、ラベルなしのトレーニングデータを利用してFR-IQA性能を高めることを奨励する。
本稿では, 半教師付き, 正の未ラベル学習(PU)を用いて, ラベルなしデータを活用し, オフレーヤの悪影響を軽減することを提案する。
論文 参考訳(メタデータ) (2022-04-19T09:10:06Z) - A Novel Perspective for Positive-Unlabeled Learning via Noisy Labels [49.990938653249415]
本研究では,初期疑似ラベルを雑音ラベルデータとして用いる非ラベルデータに割り当て,雑音ラベルデータを用いて深層ニューラルネットワークを訓練する手法を提案する。
実験の結果,提案手法は,いくつかのベンチマークデータセットにおいて,最先端の手法よりも有意に優れていた。
論文 参考訳(メタデータ) (2021-03-08T11:46:02Z) - Label Smoothed Embedding Hypothesis for Out-of-Distribution Detection [72.35532598131176]
我々は,$k$-NN 密度推定値を用いて OOD サンプルを検出する教師なし手法を提案する。
emphLabel Smoothed Embedding hypothesis と呼ばれるラベル平滑化に関する最近の知見を活用する。
提案手法は,多くのOODベースラインを上回り,新しい有限サンプル高確率統計結果を提供することを示す。
論文 参考訳(メタデータ) (2021-02-09T21:04:44Z) - Classify and Generate Reciprocally: Simultaneous Positive-Unlabelled
Learning and Conditional Generation with Extra Data [77.31213472792088]
クラスラベルデータの不足は、多くの機械学習問題において、ユビキタスなボトルネックとなっている。
本稿では, 正負ラベル付き(PU)分類と, 余分なラベル付きデータによる条件生成を活用することで, この問題に対処する。
本稿では,PU分類と条件生成を併用した新たなトレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-14T08:27:40Z) - Improving Positive Unlabeled Learning: Practical AUL Estimation and New
Training Method for Extremely Imbalanced Data Sets [10.870831090350402]
我々は2つの側面から、最先端技術に関するポジティブ・アンラベル(PU)学習を改善する。
まず,未ラベルサンプルの事前知識を必要とせずに生のPUデータを利用する,非バイアスの実用的なAUL推定法を提案する。
次に,極めて不均衡なデータセットに対する新しいトレーニング手法であるProbTaggingを提案する。
論文 参考訳(メタデータ) (2020-04-21T08:32:57Z) - MixPUL: Consistency-based Augmentation for Positive and Unlabeled
Learning [8.7382177147041]
本稿では, 整合性正規化に基づく簡易かつ効果的なデータ拡張手法である coinedalgo を提案する。
アルゴインコーポレートは、拡張データを生成するために、教師付きおよび教師なしの一貫性トレーニングを行う。
我々は,CIFAR-10データセットの分類誤差を16.49から13.09まで,それぞれ異なる正のデータ量で平均的に改善したことを示す。
論文 参考訳(メタデータ) (2020-04-20T15:43:33Z) - UGRWO-Sampling for COVID-19 dataset: A modified random walk
under-sampling approach based on graphs to imbalanced data classification [2.15242029196761]
本稿では,不均衡なデータセットのグラフに基づく新しいRWO-Sampling(Random Walk Over-Sampling)を提案する。
アンダーサンプリング法とオーバーサンプリング法に基づく2つのスキームを導入し,ノイズや外れ値に対して近接情報を堅牢に保つ。
論文 参考訳(メタデータ) (2020-02-10T03:29:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。