論文の概要: Large Language Models Can Be Used to Scale the Ideologies of Politicians
in a Zero-Shot Learning Setting
- arxiv url: http://arxiv.org/abs/2303.12057v3
- Date: Mon, 17 Apr 2023 16:17:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-18 20:35:51.252959
- Title: Large Language Models Can Be Used to Scale the Ideologies of Politicians
in a Zero-Shot Learning Setting
- Title(参考訳): ゼロショット学習環境における政治家のイデオロギーのスケールアップに大規模言語モデルを用いる
- Authors: Patrick Y. Wu, Jonathan Nagler, Joshua A. Tucker, Solomon Messing
- Abstract要約: 我々は、ChatGPTに送ったプロンプトを用いて、第116回アメリカ合衆国上院議員間の対等にリベラル・保守的な比較を拡大する。
我々の尺度は、DW-ノミネイトのような広く使われているリベラル保守尺度と強く関連している。
我々の措置は他の措置よりも政治活動家の上院議員に対する認識と強く結びついている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The aggregation of knowledge embedded in large language models (LLMs) holds
the promise of new solutions to problems of observability and measurement in
the social sciences. We examine this potential in a challenging setting:
measuring latent ideology -- crucial for better understanding core political
functions such as democratic representation. We scale pairwise
liberal-conservative comparisons between members of the 116th U.S. Senate using
prompts made to ChatGPT. Our measure strongly correlates with widely used
liberal-conservative scales such as DW-NOMINATE. Our scale also has
interpretative advantages, such as not placing senators who vote against their
party for ideologically extreme reasons towards the middle. Our measure is more
strongly associated with political activists' perceptions of senators than
other measures, consistent with LLMs synthesizing vast amounts of politically
relevant data from internet/book corpora rather than memorizing existing
measures. LLMs will likely open new avenues for measuring latent constructs
utilizing modeled information from massive text corpora.
- Abstract(参考訳): 大規模言語モデル(LLM)に埋め込まれた知識の集約は、社会科学における可観測性と測定の問題に対する新しい解決策の約束を保っている。
潜在的なイデオロギーを測定する — 民主的な代表のような中核的な政治機能を理解する上で極めて重要である。
我々は、ChatGPTに送ったプロンプトを用いて、第116回アメリカ合衆国上院議員間の対等にリベラル・保守的な比較を拡大する。
我々の尺度は、DW-ノミネイトのような広く使われているリベラル保守尺度と強く関連している。
私たちの規模には、イデオロギー的に極端な理由から党に反対する上院議員を中央に配置しないなど、解釈上の利点もあります。
我々の措置は他の措置よりも政治活動家の上院議員に対する認識と強く結びついており、既存の措置を記憶するのではなく、インターネットや本のコーパスから膨大な量の政治的関連データを合成するLLMと一致している。
LLMは、大量のテキストコーパスからモデル化された情報を利用する潜在構造を測定するための新しい道を開くだろう。
関連論文リスト
- PRISM: A Methodology for Auditing Biases in Large Language Models [9.751718230639376]
PRISMは、大規模言語モデルを監査するための柔軟な調査ベースの方法論である。
優先事項を直接調査するのではなく、タスクベースの調査を通じて間接的にこれらのポジションを照会しようとする。
論文 参考訳(メタデータ) (2024-10-24T16:57:20Z) - Large Language Models Reflect the Ideology of their Creators [73.25935570218375]
大規模言語モデル(LLM)は、自然言語を生成するために大量のデータに基づいて訓練される。
異なるLLMや言語にまたがるイデオロギー的姿勢の顕著な多様性を明らかにする。
論文 参考訳(メタデータ) (2024-10-24T04:02:30Z) - Large Language Models' Detection of Political Orientation in Newspapers [0.0]
新聞の立場をよりよく理解するための様々な方法が開発されている。
LLM(Large Language Models)の出現は、研究者や市民を補助する破壊的な可能性を秘めている。
我々は,広く採用されている4つのLCMが新聞の位置づけを評価する方法を比較し,その回答が相互に一致しているかどうかを比較する。
膨大なデータセットを通じて、新聞の記事は単一のLCMによって著しく異なる位置に配置され、アルゴリズムの一貫性のないトレーニングや過度なランダム性を示唆している。
論文 参考訳(メタデータ) (2024-05-23T06:18:03Z) - Assessing Political Bias in Large Language Models [0.624709220163167]
我々は、ドイツの有権者の視点から、欧州連合(EU)内の政治問題に関するオープンソースのLarge Language Models(LLMs)の政治的バイアスを評価する。
Llama3-70Bのような大型モデルは、左派政党とより緊密に連携する傾向にあるが、小さなモデルは中立であることが多い。
論文 参考訳(メタデータ) (2024-05-17T15:30:18Z) - Measuring Political Bias in Large Language Models: What Is Said and How It Is Said [46.1845409187583]
政治問題に関するコンテンツの内容とスタイルの両方を分析し,LLMにおける政治的偏見を測定することを提案する。
提案尺度は, 生殖権や気候変動などの異なる政治課題を, それらのバイアスの内容(世代的物質)と様式(語彙的極性)の両方で考察する。
論文 参考訳(メタデータ) (2024-03-27T18:22:48Z) - Whose Side Are You On? Investigating the Political Stance of Large Language Models [56.883423489203786]
大規模言語モデル(LLM)の政治的指向性について,8つのトピックのスペクトルにわたって検討する。
我々の調査は、中絶からLGBTQ問題まで8つのトピックにまたがるLLMの政治的整合性について考察している。
この結果から,ユーザはクエリ作成時に留意すべきであり,中立的なプロンプト言語を選択する際には注意が必要であることが示唆された。
論文 参考訳(メタデータ) (2024-03-15T04:02:24Z) - Political Compass or Spinning Arrow? Towards More Meaningful Evaluations for Values and Opinions in Large Language Models [61.45529177682614]
我々は,大規模言語モデルにおける価値と意見の制約評価パラダイムに挑戦する。
強制されない場合、モデルが実質的に異なる答えを与えることを示す。
我々はこれらの知見をLLMの価値と意見を評価するための推奨とオープンな課題に抽出する。
論文 参考訳(メタデータ) (2024-02-26T18:00:49Z) - LM-Polygraph: Uncertainty Estimation for Language Models [71.21409522341482]
不確実性推定(UE)手法は、大規模言語モデル(LLM)の安全性、責任性、効果的な利用のための1つの経路である。
テキスト生成タスクにおけるLLMの最先端UEメソッドのバッテリを実装したフレームワークであるLM-PolygraphをPythonで統一したプログラムインタフェースで導入する。
研究者によるUEテクニックの一貫した評価のための拡張可能なベンチマークと、信頼スコア付き標準チャットダイアログを強化するデモWebアプリケーションを導入している。
論文 参考訳(メタデータ) (2023-11-13T15:08:59Z) - Whose Opinions Do Language Models Reflect? [88.35520051971538]
質の高い世論調査と関連する人的反応を利用して,言語モデル(LM)に反映された意見を検討する。
我々は、現在のLMが反映している見解と、アメリカの人口集団の見解の間にかなりの不一致を見出した。
我々の分析は、人間のフィードバック調整されたLMの左利き傾向に関する事前の観察を裏付けるものである。
論文 参考訳(メタデータ) (2023-03-30T17:17:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。