論文の概要: Reimagining Application User Interface (UI) Design using Deep Learning
Methods: Challenges and Opportunities
- arxiv url: http://arxiv.org/abs/2303.13055v1
- Date: Thu, 23 Mar 2023 05:59:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-24 15:32:53.532134
- Title: Reimagining Application User Interface (UI) Design using Deep Learning
Methods: Challenges and Opportunities
- Title(参考訳): 深層学習手法を用いたアプリケーションユーザインタフェース(ui)設計の再考:課題と機会
- Authors: Subtain Malik, Muhammad Tariq Saeed, Marya Jabeen Zia, Shahzad Rasool,
Liaquat Ali Khan, and Mian Ilyas Ahmed
- Abstract要約: この調査は、ユーザインターフェースアプリケーションの設計に広く使用されている、よく知られたディープラーニング技術とデータセットを含んでいる。
ユーザインタフェース設計自動化タスクにおけるディープラーニングの利用は、ソフトウェア開発産業の進歩の潜在的な分野の1つだと考えています。
- 参考スコア(独自算出の注目度): 0.769672852567215
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present a review of the recent work in deep learning
methods for user interface design. The survey encompasses well known deep
learning techniques (deep neural networks, convolutional neural networks,
recurrent neural networks, autoencoders, and generative adversarial networks)
and datasets widely used to design user interface applications. We highlight
important problems and emerging research frontiers in this field. We believe
that the use of deep learning for user interface design automation tasks could
be one of the high potential fields for the advancement of the software
development industry.
- Abstract(参考訳): 本稿では,ユーザインタフェース設計のためのディープラーニング手法に関する最近の研究について概観する。
この調査は、よく知られたディープラーニング技術(ディープニューラルネットワーク、畳み込みニューラルネットワーク、リカレントニューラルネットワーク、オートエンコーダ、ジェネレイティブアドバーサネットワーク)と、ユーザインターフェースアプリケーションの設計に広く使用されるデータセットを含んでいる。
我々はこの分野の重要な問題と新興研究のフロンティアに注目している。
ユーザインタフェース設計自動化タスクにおけるディープラーニングの利用は、ソフトウェア開発産業の進歩の潜在的な分野の1つだと考えています。
関連論文リスト
- Aligning Knowledge Graphs Provided by Humans and Generated from Neural Networks in Specific Tasks [5.791414814676125]
本稿では,ニューラルネットワークによる知識グラフの生成と活用を可能にする革新的な手法を提案する。
われわれのアプローチは、従来の単語の埋め込みモデルへの依存を排除し、ニューラルネットワークから概念をマイニングし、それらを人間の知識と直接整合させる。
実験により,本手法は人間の知識と密接に一致したネットワーク生成概念を連続的に捕捉し,これまでヒトが認識していなかった新しい有用な概念を発見できることがわかった。
論文 参考訳(メタデータ) (2024-04-23T20:33:17Z) - Deep Internal Learning: Deep Learning from a Single Input [88.59966585422914]
多くの場合、手元にある入力からネットワークをトレーニングする価値がある。
これは、トレーニングデータが少なく、多様性が大きい多くの信号および画像処理問題に特に関係している。
本研究の目的は,この2つの重要な方向に向けて,過去数年間に提案されてきた深層学習技術について報告することである。
論文 参考訳(メタデータ) (2023-12-12T16:48:53Z) - Towards Machine Learning for Placement and Routing in Chip Design: a
Methodological Overview [72.79089075263985]
配置とルーティングは、現代のチップ設計フローにおいて必須かつ困難な2つのタスクである。
機械学習は、そのデータ駆動性によって有望な見通しを示しており、知識や事前への依存度は低い。
論文 参考訳(メタデータ) (2022-02-28T06:28:44Z) - Implementing Spiking Neural Networks on Neuromorphic Architectures: A
Review [0.19573380763700707]
我々は,ニューロモルフィックコンピューティングのシステムソフトウェア技術分野における将来が持つ課題と機会を強調する。
プラットフォームベース設計とハードウェア・ソフトウェア共同設計の両方に提案されているフレームワークの概要について概説する。
論文 参考訳(メタデータ) (2022-02-17T21:00:59Z) - Neural Architecture Search for Dense Prediction Tasks in Computer Vision [74.9839082859151]
ディープラーニングは、ニューラルネットワークアーキテクチャエンジニアリングに対する需要の高まりにつながっている。
ニューラルネットワーク検索(NAS)は、手動ではなく、データ駆動方式でニューラルネットワークアーキテクチャを自動設計することを目的としている。
NASはコンピュータビジョンの幅広い問題に適用されている。
論文 参考訳(メタデータ) (2022-02-15T08:06:50Z) - Ten Quick Tips for Deep Learning in Biology [116.78436313026478]
機械学習は、データのパターンを認識し、予測モデリングに使用するアルゴリズムの開発と応用に関係している。
ディープラーニングは、独自の機械学習のサブフィールドになっている。
生物学的研究の文脈において、ディープラーニングは高次元の生物学的データから新しい洞察を導き出すためにますます使われてきた。
論文 参考訳(メタデータ) (2021-05-29T21:02:44Z) - A Comprehensive Survey on Community Detection with Deep Learning [93.40332347374712]
コミュニティは、ネットワーク内の他のコミュニティと異なるメンバーの特徴と接続を明らかにする。
この調査は、最先端の手法の様々なカテゴリをカバーする新しい分類法を考案し、提案する。
ディープニューラルネットワーク(Deep Neural Network)は、畳み込みネットワーク(convolutional network)、グラフアテンションネットワーク( graph attention network)、生成的敵ネットワーク(generative adversarial network)、オートエンコーダ(autoencoder)に分けられる。
論文 参考訳(メタデータ) (2021-05-26T14:37:07Z) - NAS-Navigator: Visual Steering for Explainable One-Shot Deep Neural
Network Synthesis [53.106414896248246]
本稿では,分析者がドメイン知識を注入することで,解のサブグラフ空間を効果的に構築し,ネットワーク探索をガイドするフレームワークを提案する。
このテクニックを反復的に適用することで、アナリストは、与えられたアプリケーションに対して最高のパフォーマンスのニューラルネットワークアーキテクチャに収束することができる。
論文 参考訳(メタデータ) (2020-09-28T01:48:45Z) - Applications of Deep Neural Networks with Keras [0.0]
ディープラーニングにより、ニューラルネットワークは人間の脳の機能のような方法で情報の階層を学習することができる。
本コースでは,従来のニューラルネットワーク構造であるConversa Neural Networks (CNN), Long Short-Term Memory (LSTM), Gated Recurrent Neural Networks (GRU), General Adrial Networks (GAN)を紹介する。
論文 参考訳(メタデータ) (2020-09-11T22:09:10Z) - Deep learning approaches for neural decoding: from CNNs to LSTMs and
spikes to fMRI [2.0178765779788495]
神経信号から直接の行動、知覚、認知状態の復号化は、脳-コンピュータインタフェースの研究に応用されている。
過去10年間で、ディープラーニングは多くの機械学習タスクにおいて最先端の手法になっている。
ディープラーニングは、幅広いタスクにわたるニューラルデコーディングの正確性と柔軟性を改善するための有用なツールであることが示されている。
論文 参考訳(メタデータ) (2020-05-19T18:10:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。