A Confident Labelling Strategy Based on Deep Learning for Improving
Early Detection of Knee OsteoArthritis
- URL: http://arxiv.org/abs/2303.13203v1
- Date: Thu, 23 Mar 2023 11:57:50 GMT
- Title: A Confident Labelling Strategy Based on Deep Learning for Improving
Early Detection of Knee OsteoArthritis
- Authors: Zhe Wang, Aladine Chetouani, Rachid Jennane
- Abstract summary: Knee OsteoArthritis (KOA) is a prevalent musculoskeletal disorder that causes decreased mobility in seniors.
In this paper, we propose a novel Siamese-based network, and we introduce a new hybrid loss strategy for the early detection of KOA.
- Score: 9.400820679110147
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knee OsteoArthritis (KOA) is a prevalent musculoskeletal disorder that causes
decreased mobility in seniors. The diagnosis provided by physicians is
subjective, however, as it relies on personal experience and the
semi-quantitative Kellgren-Lawrence (KL) scoring system. KOA has been
successfully diagnosed by Computer-Aided Diagnostic (CAD) systems that use deep
learning techniques like Convolutional Neural Networks (CNN). In this paper, we
propose a novel Siamese-based network, and we introduce a new hybrid loss
strategy for the early detection of KOA. The model extends the classical
Siamese network by integrating a collection of Global Average Pooling (GAP)
layers for feature extraction at each level. Then, to improve the
classification performance, a novel training strategy that partitions each
training batch into low-, medium- and high-confidence subsets, and a specific
hybrid loss function are used for each new label attributed to each sample. The
final loss function is then derived by combining the latter loss functions with
optimized weights. Our test results demonstrate that our proposed approach
significantly improves the detection performance.
Related papers
- Diagnosis of Knee Osteoarthritis Using Bioimpedance and Deep Learning [0.0]
Diagnosing knee osteoarthritis (OA) early is crucial for managing symptoms and preventing further joint damage.
In this paper, a bioimpedance-based diagnostic tool that combines precise hardware and deep learning is proposed.
arXiv Detail & Related papers (2024-10-28T20:31:27Z) - Feasibility Analysis of Federated Neural Networks for Explainable Detection of Atrial Fibrillation [1.6053176639259055]
Early detection of atrial fibrillation (AFib) is challenging due to its asymptomatic and paroxysmal nature.
This study assesses the feasibility of training a neural network on a Federated Learning (FL) platform to detect AFib using raw ECG data.
arXiv Detail & Related papers (2024-10-14T15:06:10Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - Fast Hierarchical Learning for Few-Shot Object Detection [57.024072600597464]
Transfer learning approaches have recently achieved promising results on the few-shot detection task.
These approaches suffer from catastrophic forgetting'' issue due to finetuning of base detector.
We tackle the aforementioned issues in this work.
arXiv Detail & Related papers (2022-10-10T20:31:19Z) - Coherence Learning using Keypoint-based Pooling Network for Accurately
Assessing Radiographic Knee Osteoarthritis [18.47511520060851]
Knee osteoarthritis (OA) is a common degenerate joint disorder that affects a large population of elderly people worldwide.
Current clinically-adopted knee OA grading systems are observer subjective and suffer from inter-rater disagreements.
We propose a computer-aided diagnosis approach to provide more accurate and consistent assessments of both composite and fine-grained OA grades simultaneously.
arXiv Detail & Related papers (2021-12-16T19:59:13Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event.
To augment the labeled data and improve the generalization ability of the classification model, it is necessary to aggregate data from multiple sites.
This task faces several challenges including class imbalance between mild and severe infections, domain distribution discrepancy between sites, and presence of heterogeneous features.
arXiv Detail & Related papers (2021-09-08T07:56:51Z) - Improving Music Performance Assessment with Contrastive Learning [78.8942067357231]
This study investigates contrastive learning as a potential method to improve existing MPA systems.
We introduce a weighted contrastive loss suitable for regression tasks applied to a convolutional neural network.
Our results show that contrastive-based methods are able to match and exceed SoTA performance for MPA regression tasks.
arXiv Detail & Related papers (2021-08-03T19:24:25Z) - Knee Osteoarthritis Severity Prediction using an Attentive Multi-Scale
Deep Convolutional Neural Network [8.950918531231158]
This paper presents a deep learning-based framework, namely OsteoHRNet, that automatically assesses the Knee Osteoarthritis severity in terms of Kellgren and Lawrence grade classification from X-rays.
Our proposed model has achieved the best multiclass accuracy of 71.74% and MAE of 0.311 on the baseline cohort of the OAI dataset.
arXiv Detail & Related papers (2021-06-27T17:29:46Z) - Circumpapillary OCT-Focused Hybrid Learning for Glaucoma Grading Using
Tailored Prototypical Neural Networks [1.1601676598120785]
Glaucoma is one of the leading causes of blindness worldwide.
We propose, for the first time, a novel framework for glaucoma grading using raw circumpapillary B-scans.
In particular, we set out a new OCT-based hybrid network which combines hand-driven and deep learning algorithms.
arXiv Detail & Related papers (2021-06-25T10:53:01Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Revisiting Initialization of Neural Networks [72.24615341588846]
We propose a rigorous estimation of the global curvature of weights across layers by approximating and controlling the norm of their Hessian matrix.
Our experiments on Word2Vec and the MNIST/CIFAR image classification tasks confirm that tracking the Hessian norm is a useful diagnostic tool.
arXiv Detail & Related papers (2020-04-20T18:12:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.