論文の概要: DiffMesh: A Motion-aware Diffusion Framework for Human Mesh Recovery from Videos
- arxiv url: http://arxiv.org/abs/2303.13397v4
- Date: Tue, 23 Jul 2024 01:44:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 23:43:00.788843
- Title: DiffMesh: A Motion-aware Diffusion Framework for Human Mesh Recovery from Videos
- Title(参考訳): DiffMesh:ビデオから人間のメッシュを回収するためのモーション対応拡散フレームワーク
- Authors: Ce Zheng, Xianpeng Liu, Qucheng Peng, Tianfu Wu, Pu Wang, Chen Chen,
- Abstract要約: ヒューマンメッシュリカバリ(Human Mesh recovery, HMR)は、さまざまな現実世界のアプリケーションに対して、リッチな人体情報を提供する。
ビデオベースのアプローチはこの問題を緩和するために時間的情報を活用する。
DiffMeshはビデオベースのHMRのための革新的な動き認識型拡散型フレームワークである。
- 参考スコア(独自算出の注目度): 20.895221536570627
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human mesh recovery (HMR) provides rich human body information for various real-world applications. While image-based HMR methods have achieved impressive results, they often struggle to recover humans in dynamic scenarios, leading to temporal inconsistencies and non-smooth 3D motion predictions due to the absence of human motion. In contrast, video-based approaches leverage temporal information to mitigate this issue. In this paper, we present DiffMesh, an innovative motion-aware Diffusion-like framework for video-based HMR. DiffMesh establishes a bridge between diffusion models and human motion, efficiently generating accurate and smooth output mesh sequences by incorporating human motion within the forward process and reverse process in the diffusion model. Extensive experiments are conducted on the widely used datasets (Human3.6M \cite{h36m_pami} and 3DPW \cite{pw3d2018}), which demonstrate the effectiveness and efficiency of our DiffMesh. Visual comparisons in real-world scenarios further highlight DiffMesh's suitability for practical applications.
- Abstract(参考訳): ヒューマンメッシュリカバリ(Human Mesh recovery, HMR)は、さまざまな現実世界のアプリケーションに対して、リッチな人体情報を提供する。
画像に基づくHMR法は目覚ましい結果を得たが、動的シナリオにおいて人間の回復に苦慮することが多く、時間的不整合や人間の動きの欠如による非滑らかな3次元運動予測につながる。
対照的に、ビデオベースのアプローチはこの問題を緩和するために時間的情報を活用する。
本稿では,ビデオベースHMRのためのDiffMeshについて述べる。
DiffMeshは、拡散モデルと人間の動きの間の橋渡しを確立し、人間の動きを前方プロセスに組み込んで正確な出力メッシュシーケンスを効率よく生成し、拡散モデルに逆処理を組み込む。
Human3.6M \cite{h36m_pami} と 3DPW \cite{pw3d2018} は、我々のDiffMeshの有効性と効率を示す。
実世界のシナリオにおけるビジュアル比較は、実用アプリケーションに対するDiffMeshの適合性をさらに強調する。
関連論文リスト
- Motion Diffusion-Guided 3D Global HMR from a Dynamic Camera [3.6948631725065355]
拡散最適化を用いた新しい3次元大域HMR法DiffOptを提案する。
我々の重要な洞察は、動き拡散モデル(MDM)のような人間の動き生成の最近の進歩は、コヒーレントな人間の動きの強い先行を含むことである。
我々はDiffOptをGlobal 3D Human Pose and Shape in the Wildの電磁データベースからビデオシーケンスで検証した。
論文 参考訳(メタデータ) (2024-11-15T21:09:40Z) - MoManifold: Learning to Measure 3D Human Motion via Decoupled Joint Acceleration Manifolds [20.83684434910106]
我々は、連続した高次元運動空間における可塑性人間の動きをモデル化した、新しい人間の動きであるMoManifoldを提案する。
具体的には、既存の限られた動きデータから人間の力学をモデル化する新しい結合加速法を提案する。
大規模な実験により、MoManifoldはいくつかの下流タスクにおいて既存のSOTAよりも優れていることが示された。
論文 参考訳(メタデータ) (2024-09-01T15:00:16Z) - COIN: Control-Inpainting Diffusion Prior for Human and Camera Motion Estimation [98.05046790227561]
COINは、人間の動きとカメラの動きを細粒度に制御できる、コントロール・インパインティング・モーション拡散である。
COINは、グローバルな人間の動き推定とカメラの動き推定という観点から、最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2024-08-29T10:36:29Z) - RoHM: Robust Human Motion Reconstruction via Diffusion [58.63706638272891]
RoHMは、モノクロRGB(-D)ビデオから頑健な3次元人間の動きを復元するためのアプローチである。
ノイズと閉鎖された入力データに条件付けし、一貫した大域座標で完全な可塑性運動を再構成した。
本手法は,テスト時に高速でありながら,定性的かつ定量的に最先端の手法より優れる。
論文 参考訳(メタデータ) (2024-01-16T18:57:50Z) - HMP: Hand Motion Priors for Pose and Shape Estimation from Video [52.39020275278984]
我々は,多種多様な高品質の手の動きを特徴とするAMASSデータセットに基づいて,手動に特有な生成動作を開発する。
頑健な動きの統合は、特に隠蔽されたシナリオにおいて、パフォーマンスを著しく向上させる。
HO3DおよびDexYCBデータセットの質的および定量的評価により,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-12-27T22:35:33Z) - Realistic Human Motion Generation with Cross-Diffusion Models [30.854425772128568]
クロスヒューマンモーション拡散モデル(クロスディフ)
拡散モデルのトレーニングでは,共有変圧器ネットワークを用いて3次元情報と2次元情報を統合する。
CrossDiffは、両方の表現の強みを効果的に組み合わせて、より現実的なモーションシーケンスを生成する。
論文 参考訳(メタデータ) (2023-12-18T07:44:40Z) - Distribution-Aligned Diffusion for Human Mesh Recovery [16.64567393672489]
本稿では,人間のメッシュ回復のための拡散に基づくアプローチを提案する。
本稿では,メッシュ回復を逆拡散過程とするHuman Mesh Diffusion(HMDiff)フレームワークを提案する。
提案手法は, 広く使用されている3つのデータセットに対して, 最先端の性能を実現する。
論文 参考訳(メタデータ) (2023-08-25T13:29:31Z) - Modiff: Action-Conditioned 3D Motion Generation with Denoising Diffusion
Probabilistic Models [58.357180353368896]
本稿では,現実的で多様な3D骨格に基づく運動生成問題に対処するために,拡散確率モデル(DDPM)の利点を生かした条件付きパラダイムを提案する。
我々はDDPMを用いてカテゴリ的動作で条件付けられた動作列の可変数を合成する先駆的な試みである。
論文 参考訳(メタデータ) (2023-01-10T13:15:42Z) - Executing your Commands via Motion Diffusion in Latent Space [51.64652463205012]
本研究では,動作遅延に基づく拡散モデル(MLD)を提案し,条件付き入力に対応する鮮明な動き列を生成する。
我々のMDDは、広範囲な人体運動生成タスクにおいて、最先端の手法よりも大幅に改善されている。
論文 参考訳(メタデータ) (2022-12-08T03:07:00Z) - Human Motion Diffusion Model [35.05219668478535]
運動拡散モデル(英: Motion Diffusion Model、MDM)は、人間の動作領域に対する変換器に基づく生成モデルである。
我々は,本モデルが軽量な資源で訓練されていることを示すとともに,テキスト・トゥ・モーションとアクション・トゥ・モーションのベンチマークにおいて,最先端の結果が得られることを示した。
論文 参考訳(メタデータ) (2022-09-29T16:27:53Z) - Learning Local Recurrent Models for Human Mesh Recovery [50.85467243778406]
本稿では,人間のメッシュを標準的な骨格モデルに従って複数の局所的に分割するビデオメッシュ復元手法を提案する。
次に、各局所部分の力学を別個のリカレントモデルでモデル化し、各モデルは、人体の既知の運動構造に基づいて適切に条件付けする。
これにより、構造的インフォームドな局所的再帰学習アーキテクチャが実現され、アノテーションを使ってエンドツーエンドでトレーニングすることができる。
論文 参考訳(メタデータ) (2021-07-27T14:30:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。