PPG-based Heart Rate Estimation with Efficient Sensor Sampling and
Learning Models
- URL: http://arxiv.org/abs/2303.13636v1
- Date: Thu, 23 Mar 2023 19:47:36 GMT
- Title: PPG-based Heart Rate Estimation with Efficient Sensor Sampling and
Learning Models
- Authors: Yuntong Zhang, Jingye Xu, Mimi Xie, Wei Wang, Keying Ye, Jing Wang,
Dakai Zhu
- Abstract summary: Photoplethysthy (mography) sensors embedded in wearable devices can estimate heart rate (HR) with high accuracy.
However, applying PPG sensor based HR estimation to embedded devices still faces challenges due to the energy-intensive high-frequency PPG sampling.
In this work, we aim to explore HR estimation techniques that are more suitable for lower-power and resource-constrained embedded devices.
- Score: 6.157700936357335
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent studies showed that Photoplethysmography (PPG) sensors embedded in
wearable devices can estimate heart rate (HR) with high accuracy. However,
despite of prior research efforts, applying PPG sensor based HR estimation to
embedded devices still faces challenges due to the energy-intensive
high-frequency PPG sampling and the resource-intensive machine-learning models.
In this work, we aim to explore HR estimation techniques that are more suitable
for lower-power and resource-constrained embedded devices. More specifically,
we seek to design techniques that could provide high-accuracy HR estimation
with low-frequency PPG sampling, small model size, and fast inference time.
First, we show that by combining signal processing and ML, it is possible to
reduce the PPG sampling frequency from 125 Hz to only 25 Hz while providing
higher HR estimation accuracy. This combination also helps to reduce the ML
model feature size, leading to smaller models. Additionally, we present a
comprehensive analysis on different ML models and feature sizes to compare
their accuracy, model size, and inference time. The models explored include
Decision Tree (DT), Random Forest (RF), K-nearest neighbor (KNN), Support
vector machines (SVM), and Multi-layer perceptron (MLP). Experiments were
conducted using both a widely-utilized dataset and our self-collected dataset.
The experimental results show that our method by combining signal processing
and ML had only 5% error for HR estimation using low-frequency PPG data.
Moreover, our analysis showed that DT models with 10 to 20 input features
usually have good accuracy, while are several magnitude smaller in model sizes
and faster in inference time.
Related papers
- Scaling Wearable Foundation Models [54.93979158708164]
We investigate the scaling properties of sensor foundation models across compute, data, and model size.
Using a dataset of up to 40 million hours of in-situ heart rate, heart rate variability, electrodermal activity, accelerometer, skin temperature, and altimeter per-minute data from over 165,000 people, we create LSM.
Our results establish the scaling laws of LSM for tasks such as imputation, extrapolation, both across time and sensor modalities.
arXiv Detail & Related papers (2024-10-17T15:08:21Z) - SMRD: SURE-based Robust MRI Reconstruction with Diffusion Models [76.43625653814911]
Diffusion models have gained popularity for accelerated MRI reconstruction due to their high sample quality.
They can effectively serve as rich data priors while incorporating the forward model flexibly at inference time.
We introduce SURE-based MRI Reconstruction with Diffusion models (SMRD) to enhance robustness during testing.
arXiv Detail & Related papers (2023-10-03T05:05:35Z) - Efficient and Direct Inference of Heart Rate Variability using Both
Signal Processing and Machine Learning [15.877746886929831]
Heart Rate Variability (HRV) measures the variation of the time between consecutive heartbeats and is a major indicator of physical and mental health.
Recent research has demonstrated that photoplethysmography sensors can be used to infer HRV.
However, many prior studies had high errors because they only employed signal processing or machine learning (ML)
arXiv Detail & Related papers (2023-03-23T19:47:53Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
We produce a model that can classify six different hand gestures with a limited number of samples that generalizes well to a wider audience.
We appeal to a set of more elementary methods such as the use of random bounds on a signal, but desire to show the power these methods can carry in an online setting.
arXiv Detail & Related papers (2022-06-29T23:22:18Z) - Photoelectric Factor Prediction Using Automated Learning and Uncertainty
Quantification [0.0]
The photoelectric factor (PEF) is an important well logging tool to distinguish between different types of reservoir rocks.
The ratio of rock minerals could be determined by combining PEF log with other well logs.
However, PEF log could be missing in some cases such as in old well logs and wells drilled with barium-based mud.
arXiv Detail & Related papers (2022-06-17T18:03:38Z) - Q-PPG: Energy-Efficient PPG-based Heart Rate Monitoring on Wearable
Devices [22.7371904884504]
We propose a design methodology to automatically generate a rich family of deep Temporal Convolutional Networks (TCNs) for HR monitoring.
Our most accurate model sets a new state-of-the-art in Mean Absolute Error.
We deploy our TCNs on an embedded platform featuring a STM32WB55 microcontroller, demonstrating their suitability for real-time execution.
arXiv Detail & Related papers (2022-03-24T10:50:33Z) - Embedding Temporal Convolutional Networks for Energy-Efficient PPG-Based
Heart Rate Monitoring [17.155316991045765]
Photoplethysmography (volution) sensors allow for non-invasive and comfortable heart-rate (HR) monitoring.
Motion Artifacts (MAs) severely impact the monitoring accuracy, causing high variability in the skin-to-sensor interface.
We propose a computationally lightweight yet robust deep learning-based approach for PPG-based HR estimation.
We validate our approaches on two benchmark datasets, achieving as low as 3.84 Beats per Minute (BPM) of Mean Absolute Error (MAE) on PPGDalia.
arXiv Detail & Related papers (2022-03-01T17:04:28Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - A Novel Non-Invasive Estimation of Respiration Rate from
Photoplethysmograph Signal Using Machine Learning Model [0.0]
Respiration rate (RR) is a vital indicator of the wellness of a patient.
Real-time continuous RR monitoring facility is only available at the intensive care unit (ICU)
Recent researches have proposed Photoplethysmogram (ECG) and/ Electrocardiogram (ECG) signals for RR estimation.
This paper describes a novel approach to RR estimation using machine learning (ML) models with the PPG signal features.
arXiv Detail & Related papers (2021-02-18T17:08:50Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
Outlier detection (OD) is a key machine learning (ML) task for identifying abnormal objects from general samples.
We propose a modular acceleration system, called SUOD, to address it.
arXiv Detail & Related papers (2020-03-11T00:22:50Z) - Assessing Graph-based Deep Learning Models for Predicting Flash Point [52.931492216239995]
Graph-based deep learning (GBDL) models were implemented in predicting flash point for the first time.
Average R2 and Mean Absolute Error (MAE) scores of MPNN are, respectively, 2.3% lower and 2.0 K higher than previous comparable studies.
arXiv Detail & Related papers (2020-02-26T06:10:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.