Efficient and Direct Inference of Heart Rate Variability using Both
Signal Processing and Machine Learning
- URL: http://arxiv.org/abs/2303.13637v1
- Date: Thu, 23 Mar 2023 19:47:53 GMT
- Title: Efficient and Direct Inference of Heart Rate Variability using Both
Signal Processing and Machine Learning
- Authors: Yuntong Zhang, Jingye Xu, Mimi Xie, Dakai Zhu, Houbing Song, Wei Wang
- Abstract summary: Heart Rate Variability (HRV) measures the variation of the time between consecutive heartbeats and is a major indicator of physical and mental health.
Recent research has demonstrated that photoplethysmography sensors can be used to infer HRV.
However, many prior studies had high errors because they only employed signal processing or machine learning (ML)
- Score: 15.877746886929831
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Heart Rate Variability (HRV) measures the variation of the time between
consecutive heartbeats and is a major indicator of physical and mental health.
Recent research has demonstrated that photoplethysmography (PPG) sensors can be
used to infer HRV. However, many prior studies had high errors because they
only employed signal processing or machine learning (ML), or because they
indirectly inferred HRV, or because there lacks large training datasets. Many
prior studies may also require large ML models. The low accuracy and large
model sizes limit their applications to small embedded devices and potential
future use in healthcare. To address the above issues, we first collected a
large dataset of PPG signals and HRV ground truth. With this dataset, we
developed HRV models that combine signal processing and ML to directly infer
HRV. Evaluation results show that our method had errors between 3.5% to 25.7%
and outperformed signal-processing-only and ML-only methods. We also explored
different ML models, which showed that Decision Trees and Multi-level
Perceptrons have 13.0% and 9.1% errors on average with models at most hundreds
of KB and inference time less than 1ms. Hence, they are more suitable for small
embedded devices and potentially enable the future use of PPG-based HRV
monitoring in healthcare.
Related papers
- MOZART: Ensembling Approach for COVID-19 Detection using Chest X-Ray Imagery [0.0]
COVID-19, has led to a global pandemic that strained the healthcare systems.
Traditional convolutional neural networks (CNNs) achieve impressive accuracy.
We introduce the MOZART framework, an ensemble learning approach that enhances the virus detection.
arXiv Detail & Related papers (2024-10-11T21:02:58Z) - Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Camera-Based HRV Prediction for Remote Learning Environments [4.074837550066978]
Restoring blood volume pulse signals from facial videos is a challenging task that involves a series of preprocessing, image algorithms, and postprocessing to restore waveforms.
The challenge in obtaining HRV indices through r is the necessity for algorithms to precisely predict the BVP peak positions.
In this paper, we collected the Remote Learning Affect and Physiology (RLAP) dataset, which includes over 32 hours of highly synchronized video and labels from 58 subjects.
Using the RLAP dataset, we trained a new model called Seq-r, it is a model based on one-dimensional convolution, and experimental results reveal
arXiv Detail & Related papers (2023-05-07T02:26:00Z) - PPG-based Heart Rate Estimation with Efficient Sensor Sampling and
Learning Models [6.157700936357335]
Photoplethysthy (mography) sensors embedded in wearable devices can estimate heart rate (HR) with high accuracy.
However, applying PPG sensor based HR estimation to embedded devices still faces challenges due to the energy-intensive high-frequency PPG sampling.
In this work, we aim to explore HR estimation techniques that are more suitable for lower-power and resource-constrained embedded devices.
arXiv Detail & Related papers (2023-03-23T19:47:36Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
An extremely boosted neural network (XBNet) is used to predict clinical deterioration (CD)
The XGBoost model obtained the best results in predicting CD among Brazilian hospitals' data.
arXiv Detail & Related papers (2022-12-17T23:29:14Z) - RRWaveNet: A Compact End-to-End Multi-Scale Residual CNN for Robust PPG
Respiratory Rate Estimation [0.6464087844700315]
Respiratory rate (RR) is an important biomarker as RR changes can reflect severe medical events such as heart disease, lung disease, and sleep disorders.
Standard RR counting is prone to human error and cannot be performed continuously.
This study proposes a method for continuously estimating RR, RRWaveNet.
arXiv Detail & Related papers (2022-08-18T07:11:34Z) - Simultaneous boundary shape estimation and velocity field de-noising in
Magnetic Resonance Velocimetry using Physics-informed Neural Networks [70.7321040534471]
Magnetic resonance velocimetry (MRV) is a non-invasive technique widely used in medicine and engineering to measure the velocity field of a fluid.
Previous studies have required the shape of the boundary (for example, a blood vessel) to be known a priori.
We present a physics-informed neural network that instead uses the noisy MRV data alone to infer the most likely boundary shape and de-noised velocity field.
arXiv Detail & Related papers (2021-07-16T12:56:09Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
We introduce the importance of guided gradient descent (IGSGD) method to train inference from inputs containing missing values without imputation.
We employ reinforcement learning (RL) to adjust the gradients used to train the models via back-propagation.
Our imputation-free predictions outperform the traditional two-step imputation-based predictions using state-of-the-art imputation methods.
arXiv Detail & Related papers (2021-07-05T12:44:39Z) - A Machine Learning model of the combination of normalized SD1 and SD2
indexes from 24h-Heart Rate Variability as a predictor of myocardial
infarction [0.0]
We used the most common ML algorithms for accuracy comparison with a setting of 10-fold cross-validation.
The main findings of this study show that the combination of SD1nu + SD2nu has greater predictive power for MI in comparison to other HRV indexes.
arXiv Detail & Related papers (2021-02-18T14:57:49Z) - Assessing Graph-based Deep Learning Models for Predicting Flash Point [52.931492216239995]
Graph-based deep learning (GBDL) models were implemented in predicting flash point for the first time.
Average R2 and Mean Absolute Error (MAE) scores of MPNN are, respectively, 2.3% lower and 2.0 K higher than previous comparable studies.
arXiv Detail & Related papers (2020-02-26T06:10:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.