論文の概要: Anomaly Detection under Distribution Shift
- arxiv url: http://arxiv.org/abs/2303.13845v1
- Date: Fri, 24 Mar 2023 07:39:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-27 15:28:20.753332
- Title: Anomaly Detection under Distribution Shift
- Title(参考訳): 分布シフトによる異常検出
- Authors: Tri Cao, Jiawen Zhu, and Guansong Pang
- Abstract要約: 異常検出(AD)は、通常のトレーニングサンプルのセットからパターンを学習し、テストデータの異常サンプルを特定することを目的とした、重要な機械学習タスクである。
既存のAD研究の多くは、トレーニングデータとテストデータは同一のデータ分布から引き出されると仮定しているが、テストデータは大きな分散シフトを持つ可能性がある。
トレーニングおよび推論段階のOOD標準試料の分布ギャップを最小化することにより, 多様な分布シフトに対する新しいロバストADアプローチを導入する。
- 参考スコア(独自算出の注目度): 12.506548245951517
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection (AD) is a crucial machine learning task that aims to learn
patterns from a set of normal training samples to identify abnormal samples in
test data. Most existing AD studies assume that the training and test data are
drawn from the same data distribution, but the test data can have large
distribution shifts arising in many real-world applications due to different
natural variations such as new lighting conditions, object poses, or background
appearances, rendering existing AD methods ineffective in such cases. In this
paper, we consider the problem of anomaly detection under distribution shift
and establish performance benchmarks on three widely-used AD and
out-of-distribution (OOD) generalization datasets. We demonstrate that simple
adaptation of state-of-the-art OOD generalization methods to AD settings fails
to work effectively due to the lack of labeled anomaly data. We further
introduce a novel robust AD approach to diverse distribution shifts by
minimizing the distribution gap between in-distribution and OOD normal samples
in both the training and inference stages in an unsupervised way. Our extensive
empirical results on the three datasets show that our approach substantially
outperforms state-of-the-art AD methods and OOD generalization methods on data
with various distribution shifts, while maintaining the detection accuracy on
in-distribution data.
- Abstract(参考訳): 異常検出(AD)は、通常のトレーニングサンプルのセットからパターンを学習し、テストデータの異常サンプルを特定することを目的とした、重要な機械学習タスクである。
既存のad研究のほとんどは、トレーニングデータとテストデータが同じデータ分布から引き出されると仮定しているが、テストデータは、新しい照明条件、オブジェクトのポーズ、背景の外観など、様々な自然な変化のために、多くの現実世界のアプリケーションで発生する大きな分散シフトを持つ可能性がある。
本稿では,分布シフトによる異常検出の問題点を考察し,広く使用されている3つのADおよびアウト・オブ・ディストリビューション(OOD)一般化データセットの性能ベンチマークを確立する。
ラベル付き異常データの欠如により,AD設定への最新のOOD一般化手法の簡単な適応が効果的に機能しないことを示す。
さらに, 訓練段階と推論段階の両方において, 分布内サンプルとood正規サンプルの分布ギャップを最小化し, 多様な分布シフトに対する新しいロバストad手法を導入する。
3つのデータセットの広範な実験結果から,本手法は分布シフトの異なるデータに対して,現状のAD法とOOD一般化法を大幅に上回るが,分布内データの検出精度は維持されている。
関連論文リスト
- Out-of-Distribution Detection with a Single Unconditional Diffusion Model [54.15132801131365]
アウト・オブ・ディストリビューション(OOD)検出は、異常サンプルを特定しようとする機械学習において重要なタスクである。
従来、教師なし手法はOOD検出に深い生成モデルを用いていた。
本稿では,単一モデルが多様なタスクに対してOOD検出を行うことができるかどうかを考察する。
論文 参考訳(メタデータ) (2024-05-20T08:54:03Z) - Toward Generalist Anomaly Detection via In-context Residual Learning with Few-shot Sample Prompts [25.629973843455495]
Generalist Anomaly Detection (GAD)は、ターゲットデータにさらなるトレーニングを加えることなく、さまざまなアプリケーションドメインからさまざまなデータセットの異常を検出するために一般化可能な、単一の検出モデルをトレーニングすることを目的としている。
InCTRLと呼ばれるGADのための文脈内残差学習モデルを学習する新しい手法を提案する。
InCTRLは最高のパフォーマーであり、最先端の競合手法を著しく上回っている。
論文 参考訳(メタデータ) (2024-03-11T08:07:46Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
具体的には,大規模ビジュアルデータセット上で事前学習されたモデルを利用した初期のマルチモーダルアプローチについて検討する。
本研究では,アダプタを微調整し,異常検出に向けたタスク指向の表現を学習するためのLSFA法を提案する。
論文 参考訳(メタデータ) (2024-01-06T07:30:41Z) - Understanding normalization in contrastive representation learning and out-of-distribution detection [0.0]
コントラッシブ・ラーニングに基づく簡易な手法を提案し, コントラッシブ・ラーニング空間における正規サンプルを識別することにより, 分布外データを含む手法を提案する。
われわれのアプローチは、OE(outlier exposure)アプローチや、完全に自己教師付き学習アプローチとして柔軟に適用できる。
対照的な学習を通じて学んだ高品質な機能は、利用可能なアウト・オブ・ディストリビューションデータセットが十分な多様性を持っていない場合でも、OEシナリオのパフォーマンスを一貫して向上させる。
論文 参考訳(メタデータ) (2023-12-23T16:05:47Z) - Invariant Anomaly Detection under Distribution Shifts: A Causal
Perspective [6.845698872290768]
異常検出(AD、Anomaly Detection)は、異常なサンプルを識別する機械学習タスクである。
分散シフトの制約の下では、トレーニングサンプルとテストサンプルが同じ分布から引き出されるという仮定が崩壊する。
我々は,異常検出モデルのレジリエンスを,異なる種類の分布シフトに高めようとしている。
論文 参考訳(メタデータ) (2023-12-21T23:20:47Z) - A Generic Machine Learning Framework for Fully-Unsupervised Anomaly
Detection with Contaminated Data [0.0]
本稿では,ADタスクに対する汚染されたトレーニングデータの完全教師なし改善のためのフレームワークを提案する。
このフレームワークは汎用的であり、任意の残差ベースの機械学習モデルに適用することができる。
本研究は, 改質を伴わない汚染データを用いた学習において, ナイーブなアプローチよりも明らかに優れていることを示す。
論文 参考訳(メタデータ) (2023-08-25T12:47:59Z) - DIVERSIFY: A General Framework for Time Series Out-of-distribution
Detection and Generalization [58.704753031608625]
時系列は、機械学習研究における最も困難なモダリティの1つである。
時系列上でのOODの検出と一般化は、その非定常性によって悩まされる傾向がある。
時系列の動的分布のOOD検出と一般化のためのフレームワークであるDIVERSIFYを提案する。
論文 参考訳(メタデータ) (2023-08-04T12:27:11Z) - Anomaly Detection with Score Distribution Discrimination [4.468952886990851]
本稿では,スコア分布の観点から,異常スコア関数の最適化を提案する。
正常試料と異常試料のスコア分布の重なりを最小化するオーバーラップ損失と呼ばれる新しい損失関数を設計する。
論文 参考訳(メタデータ) (2023-06-26T03:32:57Z) - Self-Trained One-class Classification for Unsupervised Anomaly Detection [56.35424872736276]
異常検出(AD)は、製造から医療まで、さまざまな分野に応用されている。
本研究は、トレーニングデータ全体がラベル付けされておらず、正規サンプルと異常サンプルの両方を含む可能性のある、教師なしAD問題に焦点を当てる。
この問題に対処するため,データリファインメントによる堅牢な一級分類フレームワークを構築した。
本手法は6.3AUCと12.5AUCの平均精度で最先端の1クラス分類法より優れていることを示す。
論文 参考訳(メタデータ) (2021-06-11T01:36:08Z) - WILDS: A Benchmark of in-the-Wild Distribution Shifts [157.53410583509924]
分散シフトは、ワイルドにデプロイされた機械学習システムの精度を実質的に低下させることができる。
分散シフトの多様な範囲を反映した8つのベンチマークデータセットのキュレーションコレクションであるWILDSを紹介します。
本研究は, 標準訓練の結果, 分布性能よりも, 分布域外性能が有意に低下することを示す。
論文 参考訳(メタデータ) (2020-12-14T11:14:56Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
ニューラルネットワークの現在のアウト・オブ・ディストリビューション(OOD)検出アルゴリズムは,様々なOOD検出シナリオにおいて不満足な結果をもたらすことを示す。
本稿では,テストデータのバッチを観察した後に検出方法を調整することで,このような「ハード」なOODシナリオがいかに有用かを検討する。
本稿では,テストデータと正規化に人工ラベリング手法を用いて,テストバッチ内のOODサンプルに対してのみ矛盾予測を生成するモデルのアンサンブルを求める手法を提案する。
論文 参考訳(メタデータ) (2020-12-10T16:55:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。