CoLa-Diff: Conditional Latent Diffusion Model for Multi-Modal MRI
Synthesis
- URL: http://arxiv.org/abs/2303.14081v1
- Date: Fri, 24 Mar 2023 15:46:10 GMT
- Title: CoLa-Diff: Conditional Latent Diffusion Model for Multi-Modal MRI
Synthesis
- Authors: Lan Jiang, Ye Mao, Xi Chen, Xiangfeng Wang, Chao Li
- Abstract summary: Most diffusion-based MRI synthesis models are using a single modality.
We propose the first diffusion-based multi-modality MRI synthesis model, namely Conditioned Latent Diffusion Model (CoLa-Diff)
Our experiments demonstrate that CoLa-Diff outperforms other state-of-the-art MRI synthesis methods.
- Score: 11.803971719704721
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: MRI synthesis promises to mitigate the challenge of missing MRI modality in
clinical practice. Diffusion model has emerged as an effective technique for
image synthesis by modelling complex and variable data distributions. However,
most diffusion-based MRI synthesis models are using a single modality. As they
operate in the original image domain, they are memory-intensive and less
feasible for multi-modal synthesis. Moreover, they often fail to preserve the
anatomical structure in MRI. Further, balancing the multiple conditions from
multi-modal MRI inputs is crucial for multi-modal synthesis. Here, we propose
the first diffusion-based multi-modality MRI synthesis model, namely
Conditioned Latent Diffusion Model (CoLa-Diff). To reduce memory consumption,
we design CoLa-Diff to operate in the latent space. We propose a novel network
architecture, e.g., similar cooperative filtering, to solve the possible
compression and noise in latent space. To better maintain the anatomical
structure, brain region masks are introduced as the priors of density
distributions to guide diffusion process. We further present auto-weight
adaptation to employ multi-modal information effectively. Our experiments
demonstrate that CoLa-Diff outperforms other state-of-the-art MRI synthesis
methods, promising to serve as an effective tool for multi-modal MRI synthesis.
Related papers
- A Unified Model for Compressed Sensing MRI Across Undersampling Patterns [69.19631302047569]
Deep neural networks have shown great potential for reconstructing high-fidelity images from undersampled measurements.
Our model is based on neural operators, a discretization-agnostic architecture.
Our inference speed is also 1,400x faster than diffusion methods.
arXiv Detail & Related papers (2024-10-05T20:03:57Z) - Physics-Informed Latent Diffusion for Multimodal Brain MRI Synthesis [43.82741134285203]
We present a physics-informed generative model capable of synthesizing a variable number of brain MRI modalities.
Our approach utilizes latent diffusion models and a two-step generative process.
Experiments demonstrate the efficacy of this approach in generating unseen MR contrasts and preserving physical plausibility.
arXiv Detail & Related papers (2024-09-20T14:21:34Z) - Phy-Diff: Physics-guided Hourglass Diffusion Model for Diffusion MRI Synthesis [45.074243735766]
We propose a physics-guided diffusion model to generate high-quality dMRI.
Our model introduces the physical principles of dMRI in the noise evolution in the diffusion process.
Our experiment results show that our method outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2024-06-05T07:09:19Z) - Memory-efficient High-resolution OCT Volume Synthesis with Cascaded Amortized Latent Diffusion Models [48.87160158792048]
We introduce a cascaded amortized latent diffusion model (CA-LDM) that can synthesis high-resolution OCT volumes in a memory-efficient way.
Experiments on a public high-resolution OCT dataset show that our synthetic data have realistic high-resolution and global features, surpassing the capabilities of existing methods.
arXiv Detail & Related papers (2024-05-26T10:58:22Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
This paper proposes to directly modulate the generation process of diffusion models using fMRI signals.
By training with about 67,000 fMRI-image pairs from various individuals, our model enjoys superior fMRI-to-image decoding capacity.
arXiv Detail & Related papers (2024-03-27T02:42:52Z) - Disentangled Multimodal Brain MR Image Translation via Transformer-based
Modality Infuser [12.402947207350394]
We propose a transformer-based modality infuser designed to synthesize multimodal brain MR images.
In our method, we extract modality-agnostic features from the encoder and then transform them into modality-specific features.
We carried out experiments on the BraTS 2018 dataset, translating between four MR modalities.
arXiv Detail & Related papers (2024-02-01T06:34:35Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
arXiv Detail & Related papers (2022-09-15T03:58:30Z) - A Learnable Variational Model for Joint Multimodal MRI Reconstruction
and Synthesis [4.056490719080639]
We propose a novel deep-learning model for joint reconstruction and synthesis of multi-modal MRI.
The output of our model includes reconstructed images of the source modalities and high-quality image synthesized in the target modality.
arXiv Detail & Related papers (2022-04-08T01:35:19Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
We propose a diffusion encoding scheme, called Slice-Interleaved Diffusion.
SIDE, that interleaves each diffusion-weighted (DW) image volume with slices encoded with different diffusion gradients.
We also present a method based on deep learning for effective reconstruction of DW images from the highly slice-undersampled data.
arXiv Detail & Related papers (2020-02-25T14:48:17Z) - Hi-Net: Hybrid-fusion Network for Multi-modal MR Image Synthesis [143.55901940771568]
We propose a novel Hybrid-fusion Network (Hi-Net) for multi-modal MR image synthesis.
In our Hi-Net, a modality-specific network is utilized to learn representations for each individual modality.
A multi-modal synthesis network is designed to densely combine the latent representation with hierarchical features from each modality.
arXiv Detail & Related papers (2020-02-11T08:26:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.