論文の概要: SmartBook: AI-Assisted Situation Report Generation
- arxiv url: http://arxiv.org/abs/2303.14337v1
- Date: Sat, 25 Mar 2023 03:03:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-28 20:28:21.913557
- Title: SmartBook: AI-Assisted Situation Report Generation
- Title(参考訳): SmartBook:AI支援の状況報告生成
- Authors: Revanth Gangi Reddy, Yi R. Fung, Qi Zeng, Manling Li, Ziqi Wang, Paul
Sullivan and Heng J
- Abstract要約: 本稿では,構造化状況レポートを生成するために,大量のニュースデータを消費するSmartBookを提案する。
We realize SmartBook for the Ukraine-Russia crisis by automatically generation intelligence analysis reports。
提案するフレームワークは,手作業によるアナリストの質問よりも,リアルタイムなイベント関連戦略的質問を自動的に検出する。
- 参考スコア(独自算出の注目度): 18.799242895032087
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Emerging events, such as the COVID pandemic and the Ukraine Crisis, require a
time-sensitive comprehensive understanding of the situation to allow for
appropriate decision-making and effective action response. Automated generation
of situation reports can significantly reduce the time, effort, and cost for
domain experts when preparing their official human-curated reports. However, AI
research toward this goal has been very limited, and no successful trials have
yet been conducted to automate such report generation. We propose SmartBook, a
novel task formulation targeting situation report generation, which consumes
large volumes of news data to produce a structured situation report with
multiple hypotheses (claims) summarized and grounded with rich links to factual
evidence. We realize SmartBook for the Ukraine-Russia crisis by automatically
generating intelligence analysis reports to assist expert analysts. The
machine-generated reports are structured in the form of timelines, with each
timeline organized by major events (or chapters), corresponding strategic
questions (or sections) and their grounded summaries (or section content). Our
proposed framework automatically detects real-time event-related strategic
questions, which are more directed than manually-crafted analyst questions,
which tend to be too complex, hard to parse, vague and high-level. Results from
thorough qualitative evaluations show that roughly 82% of the questions in
Smartbook have strategic importance, with at least 93% of the sections in the
report being tactically useful. Further, experiments show that expert analysts
tend to add more information into the SmartBook reports, with only 2.3% of the
existing tokens being deleted, meaning SmartBook can serve as a useful
foundation for analysts to build upon when creating intelligence reports.
- Abstract(参考訳): 新型コロナウイルスのパンデミックやウクライナ危機などの新興イベントでは、適切な意思決定と効果的な行動対応を可能にするために、状況に関する時間に敏感な包括的な理解が必要である。
状況報告の自動生成は、公式のヒューマンキュレートレポートを作成する際に、ドメインエキスパートの時間、労力、コストを大幅に削減することができる。
しかし、この目標に向けたAI研究は非常に限られており、そのようなレポート生成を自動化するための試験がまだ成功していない。
本研究では,大量のニュースデータを消費し,複数の仮説(主張)を要約した構造化状況報告を作成し,事実証拠との豊かなリンクを基礎とする,新しいタスク定式化手法であるsmartbookを提案する。
我々は,専門家分析支援のための情報分析レポートを自動生成することにより,ウクライナ・ロシア危機に対するスマートブックを実現する。
マシン生成レポートはタイムライン形式で構成され、それぞれのタイムラインは主要なイベント(あるいは章)、対応する戦略的質問(セクション)、およびそれらの接頭辞(セクション内容)によって構成される。
提案するフレームワークは,リアルタイムのイベント関連の戦略的質問を自動的に検出する。これは,手作業によるアナリストの質問よりも指示的であり,複雑すぎる,解析が難しい,曖昧でハイレベルであることが多い。
徹底的な質的評価の結果、Smartbookの質問の約82%が戦略的に重要であり、レポートの少なくとも93%が戦術的に有用であることがわかった。
さらに、実験によれば、専門家のアナリストはsmartbookレポートにより多くの情報を追加する傾向があり、既存のトークンの2.3%しか削除されていない。
関連論文リスト
- Online Digital Investigative Journalism using SociaLens [0.0]
オンラインソースからクエリ特定データを特定し,抽出するための,多目的かつ自律的な調査ジャーナリズムツールである em SociaLens を導入している。
我々は、調査ジャーナリズム、法執行、社会政策計画におけるその利用を構想する。
発展途上国におけるレイプ事件を事例として,SociaLensの機能について考察した。
論文 参考訳(メタデータ) (2024-10-13T07:20:47Z) - KGV: Integrating Large Language Models with Knowledge Graphs for Cyber Threat Intelligence Credibility Assessment [38.312774244521]
本稿では,CTI(Cyber Threat Intelligence)品質評価フレームワークの知識グラフに基づく検証手法を提案する。
提案手法では,検証対象のOSCTIキークレームを自動的に抽出するLarge Language Models (LLM)を導入している。
研究分野のギャップを埋めるために、異種情報源からの脅威情報評価のための最初のデータセットを作成し、公開しました。
論文 参考訳(メタデータ) (2024-08-15T11:32:46Z) - DiscoveryBench: Towards Data-Driven Discovery with Large Language Models [50.36636396660163]
我々は、データ駆動探索の多段階プロセスを形式化する最初の包括的なベンチマークであるDiscoveryBenchを紹介する。
我々のベンチマークには、社会学や工学などの6つの分野にまたがる264のタスクが含まれている。
私たちのベンチマークでは、自律的なデータ駆動型発見の課題を説明し、コミュニティが前進するための貴重なリソースとして役立ちます。
論文 参考訳(メタデータ) (2024-07-01T18:58:22Z) - InfoLossQA: Characterizing and Recovering Information Loss in Text Simplification [60.10193972862099]
本研究は, 簡易化による情報損失を問合せ・問合せ形式で特徴づけ, 回復する枠組みを提案する。
QAペアは、読者がテキストの知識を深めるのに役立つように設計されている。
論文 参考訳(メタデータ) (2024-01-29T19:00:01Z) - AGIR: Automating Cyber Threat Intelligence Reporting with Natural
Language Generation [15.43868945929965]
我々は,CTIレポートの変換ツールであるAGIR(Automatic Generation of Intelligence Reports)を紹介する。
AGIRの主な目的は、包括的インテリジェンスレポートを生成するための労働集約的なタスクを自動化することで、セキュリティアナリストを強化することである。
我々はAGIRのレポート生成能力を定量的かつ質的に評価する。
論文 参考訳(メタデータ) (2023-10-04T08:25:37Z) - Embrace Divergence for Richer Insights: A Multi-document Summarization Benchmark and a Case Study on Summarizing Diverse Information from News Articles [136.84278943588652]
同一イベントを含む複数のニュース記事において遭遇する多様な情報を要約する新しい課題を提案する。
この作業を容易にするために、多様な情報を特定するためのデータ収集スキーマの概要と、DiverseSummというデータセットをキュレートした。
データセットには245のニュース記事が含まれており、各ストーリーは10のニュース記事からなり、人間公認の参照と組み合わせられる。
論文 参考訳(メタデータ) (2023-09-17T20:28:17Z) - Paradigm Shift in Sustainability Disclosure Analysis: Empowering
Stakeholders with CHATREPORT, a Language Model-Based Tool [10.653984116770234]
本稿では,企業サステナビリティレポートの分析を自動化するために,専門知識を持つ大規模言語モデル(LLM)を強化する新たなアプローチを提案する。
当社はCHATREPORTを認定し、企業における気候変動リスクの開示を評価するための第1のユースケースに適用する。
論文 参考訳(メタデータ) (2023-06-27T14:46:47Z) - Active Learning for Abstractive Text Summarization [50.79416783266641]
本稿では,抽象テキスト要約におけるアクティブラーニングのための最初の効果的なクエリ戦略を提案する。
ALアノテーションにおける私たちの戦略は、ROUGEと一貫性スコアの点からモデル性能を向上させるのに役立ちます。
論文 参考訳(メタデータ) (2023-01-09T10:33:14Z) - A Taxonomy and Archetypes of Business Analytics in Smart Manufacturing [0.0]
ビジネス分析はスマートマニュファクチャリングの重要な要因だ。
しかし、研究者や実践者は、進歩の追跡と分野における新たな知識獲得に苦慮している。
我々は、スマートマニュファクチャリングにおけるビジネス分析の古型を導出するだけでなく、四部分類を開発する。
論文 参考訳(メタデータ) (2021-10-12T16:13:45Z) - InfoBERT: Improving Robustness of Language Models from An Information
Theoretic Perspective [84.78604733927887]
BERTのような大規模言語モデルは、幅広いNLPタスクで最先端のパフォーマンスを実現している。
近年の研究では、このようなBERTベースのモデルが、テキストの敵対的攻撃の脅威に直面していることが示されている。
本稿では,事前学習した言語モデルの堅牢な微調整のための新しい学習フレームワークであるInfoBERTを提案する。
論文 参考訳(メタデータ) (2020-10-05T20:49:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。