論文の概要: KGV: Integrating Large Language Models with Knowledge Graphs for Cyber Threat Intelligence Credibility Assessment
- arxiv url: http://arxiv.org/abs/2408.08088v1
- Date: Thu, 15 Aug 2024 11:32:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-16 14:05:59.314763
- Title: KGV: Integrating Large Language Models with Knowledge Graphs for Cyber Threat Intelligence Credibility Assessment
- Title(参考訳): KGV:サイバー脅威情報信頼性評価のための知識グラフによる大規模言語モデルの統合
- Authors: Zongzong Wu, Fengxiao Tang, Ming Zhao, Yufeng Li,
- Abstract要約: 本稿では,CTI(Cyber Threat Intelligence)品質評価フレームワークの知識グラフに基づく検証手法を提案する。
提案手法では,検証対象のOSCTIキークレームを自動的に抽出するLarge Language Models (LLM)を導入している。
研究分野のギャップを埋めるために、異種情報源からの脅威情報評価のための最初のデータセットを作成し、公開しました。
- 参考スコア(独自算出の注目度): 38.312774244521
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cyber threat intelligence is a critical tool that many organizations and individuals use to protect themselves from sophisticated, organized, persistent, and weaponized cyber attacks. However, few studies have focused on the quality assessment of threat intelligence provided by intelligence platforms, and this work still requires manual analysis by cybersecurity experts. In this paper, we propose a knowledge graph-based verifier, a novel Cyber Threat Intelligence (CTI) quality assessment framework that combines knowledge graphs and Large Language Models (LLMs). Our approach introduces LLMs to automatically extract OSCTI key claims to be verified and utilizes a knowledge graph consisting of paragraphs for fact-checking. This method differs from the traditional way of constructing complex knowledge graphs with entities as nodes. By constructing knowledge graphs with paragraphs as nodes and semantic similarity as edges, it effectively enhances the semantic understanding ability of the model and simplifies labeling requirements. Additionally, to fill the gap in the research field, we created and made public the first dataset for threat intelligence assessment from heterogeneous sources. To the best of our knowledge, this work is the first to create a dataset on threat intelligence reliability verification, providing a reference for future research. Experimental results show that KGV (Knowledge Graph Verifier) significantly improves the performance of LLMs in intelligence quality assessment. Compared with traditional methods, we reduce a large amount of data annotation while the model still exhibits strong reasoning capabilities. Finally, our method can achieve XXX accuracy in network threat assessment.
- Abstract(参考訳): サイバー脅威インテリジェンス(サイバー脅威インテリジェンス)は、多くの組織や個人が、高度で組織化され、永続的で、兵器化されたサイバー攻撃から身を守るために使用する重要なツールである。
しかし、情報プラットフォームが提供する脅威情報の品質評価に焦点を当てた研究はほとんどなく、この研究にはサイバーセキュリティの専門家による手作業による分析が必要である。
本稿では,知識グラフとLarge Language Models(LLM)を組み合わせた,新しいサイバー脅威情報(CTI)品質評価フレームワークである知識グラフベースの検証手法を提案する。
提案手法では,検証対象のOSCTIキークレームを自動的に抽出するLLMを導入し,ファクトチェックのための段落からなる知識グラフを利用する。
この方法は、エンティティをノードとして複雑な知識グラフを構築する従来の方法とは異なる。
節をノードとする知識グラフの構築とエッジとしての意味的類似性により、モデルのセマンティック理解能力を効果的に強化し、ラベル付け要求を単純化する。
さらに、研究分野のギャップを埋めるために、異種情報源からの脅威情報評価のための最初のデータセットを作成し、公開しました。
我々の知る限りでは、この研究は脅威知能信頼性検証のデータセットを初めて作成し、将来の研究の参考となる。
実験結果から,KGV (Knowledge Graph Verifier) は知能品質評価におけるLLMの性能を大幅に向上させることが示された。
従来の手法と比較して、モデルが強力な推論能力を持っている間、大量のデータアノテーションを減らします。
最後に,ネットワーク脅威評価においてXXX精度を実現する手法を提案する。
関連論文リスト
- CTINEXUS: Leveraging Optimized LLM In-Context Learning for Constructing Cybersecurity Knowledge Graphs Under Data Scarcity [49.657358248788945]
サイバー脅威インテリジェンス(CTI)レポートのテキスト記述は、サイバー脅威に関する豊富な知識源である。
現在のCTI抽出法は柔軟性と一般化性に欠けており、しばしば不正確で不完全な知識抽出をもたらす。
CTINexusは,大規模言語モデルのテキスト内学習(ICL)を最適化した新しいフレームワークである。
論文 参考訳(メタデータ) (2024-10-28T14:18:32Z) - Cyber Knowledge Completion Using Large Language Models [1.4883782513177093]
IoT(Internet of Things)をCPS(Cyber-Physical Systems)に統合することで,サイバー攻撃面が拡大した。
CPSのリスクを評価することは、不完全で時代遅れのサイバーセキュリティ知識のため、ますます困難になっている。
近年のLarge Language Models (LLMs) の進歩は、サイバー攻撃による知識の完成を促進するユニークな機会となる。
論文 参考訳(メタデータ) (2024-09-24T15:20:39Z) - Actionable Cyber Threat Intelligence using Knowledge Graphs and Large Language Models [0.8192907805418583]
Microsoft、Trend Micro、CrowdStrikeはCTI抽出を容易にするために生成AIを使用している。
本稿では,Large Language Models(LLMs)とKGs(KGs)の進歩を利用して,実行可能なCTIの抽出を自動化するという課題に対処する。
本手法は,情報抽出と構造化を最適化するために,プロンプトエンジニアリング,ガイダンスフレームワーク,微調整などの手法を評価する。
実験により,本手法が関連する情報抽出に有効であることを示すとともに,指導と微調整により,迅速な工学よりも優れた性能を示した。
論文 参考訳(メタデータ) (2024-06-30T13:02:03Z) - Constructing a Knowledge Graph from Textual Descriptions of Software
Vulnerabilities in the National Vulnerability Database [3.0724051098062097]
国立データベース(NVD)の情報から脆弱性知識グラフを構築するための新しい手法を提案する。
提案手法は,ニューラルネットワーク,ルール,知識グラフの埋め込みを組み合わせることで,名前付きエンティティ認識(NER),関係抽出(RE),エンティティ予測を組み合わせる。
本手法は,サイバーセキュリティに使用される知識グラフの欠落したエンティティの修正にどのように役立つかを示し,その性能評価を行う。
論文 参考訳(メタデータ) (2023-04-30T04:23:40Z) - Recognizing and Extracting Cybersecurtity-relevant Entities from Text [1.7499351967216343]
サイバー脅威インテリジェンス(Cyber Threat Intelligence、CTI)は、脅威ベクトル、脆弱性、攻撃を記述した情報である。
CTIはしばしば、サイバーセキュリティ知識グラフ(CKG)のようなAIベースのサイバー防衛システムのトレーニングデータとして使用される。
論文 参考訳(メタデータ) (2022-08-02T18:44:06Z) - Software Vulnerability Detection via Deep Learning over Disaggregated
Code Graph Representation [57.92972327649165]
この研究は、コードコーパスから安全でないパターンを自動的に学習するためのディープラーニングアプローチを探求する。
コードには解析を伴うグラフ構造が自然に認められるため,プログラムの意味的文脈と構造的規則性の両方を利用する新しいグラフニューラルネットワーク(GNN)を開発する。
論文 参考訳(メタデータ) (2021-09-07T21:24:36Z) - InfoBERT: Improving Robustness of Language Models from An Information
Theoretic Perspective [84.78604733927887]
BERTのような大規模言語モデルは、幅広いNLPタスクで最先端のパフォーマンスを実現している。
近年の研究では、このようなBERTベースのモデルが、テキストの敵対的攻撃の脅威に直面していることが示されている。
本稿では,事前学習した言語モデルの堅牢な微調整のための新しい学習フレームワークであるInfoBERTを提案する。
論文 参考訳(メタデータ) (2020-10-05T20:49:26Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
本稿では,グラフ構造化データを用いた学習において,情報難読化による機密属性保護の問題について検討する。
本稿では,全変動量とワッサーシュタイン距離を交互に学習することで,事前決定された機密属性を局所的にフィルタリングするフレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-28T17:55:04Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
本稿では、知識グラフからのガイダンスを用いて、生テキスト上で学習する2つの自己教師型タスクを提案する。
エンティティレベルのマスキング言語モデルに基づいて、最初のコントリビューションはエンティティマスキングスキームです。
既存のパラダイムとは対照的に,本手法では事前学習時にのみ,知識グラフを暗黙的に使用する。
論文 参考訳(メタデータ) (2020-04-29T14:22:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。