論文の概要: Stochastic Model Predictive Control Utilizing Bayesian Neural Networks
- arxiv url: http://arxiv.org/abs/2303.14519v1
- Date: Sat, 25 Mar 2023 16:58:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-28 19:15:21.963317
- Title: Stochastic Model Predictive Control Utilizing Bayesian Neural Networks
- Title(参考訳): ベイズニューラルネットワークを用いた確率モデル予測制御
- Authors: J. Pohlodek, H. Alsmeier, B. Morabito, C. Schlauch, A. Savchenko, and
R. Findeisen
- Abstract要約: 測定と履歴データを統合することで、学習ベースの技術によって制御システムを強化することができるが、性能と安全性を確保することは困難である。
学習支援制御のためのベイズニューラルネットワークを探索し,その性能を排水処理プラントモデル上のガウス過程と比較した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Integrating measurements and historical data can enhance control systems
through learning-based techniques, but ensuring performance and safety is
challenging. Robust model predictive control strategies, like stochastic model
predictive control, can address this by accounting for uncertainty. Gaussian
processes are often used but have limitations with larger models and data sets.
We explore Bayesian neural networks for stochastic learning-assisted control,
comparing their performance to Gaussian processes on a wastewater treatment
plant model. Results show Bayesian neural networks achieve similar performance,
highlighting their potential as an alternative for control designs,
particularly when handling extensive data sets.
- Abstract(参考訳): 計測と履歴データの統合は、学習に基づく技術によって制御システムを強化するが、パフォーマンスと安全性の確保は困難である。
確率モデル予測制御のようなロバストモデル予測制御戦略は、不確実性を考慮してこの問題に対処することができる。
ガウス過程はよく用いられるが、より大きなモデルやデータセットに制限がある。
確率論的学習支援制御のためのベイズニューラルネットワークを探索し,その性能を排水処理プラントモデル上のガウス過程と比較した。
その結果、ベイジアンニューラルネットワークは同様のパフォーマンスを実現しており、特に広範なデータセットを扱う場合、制御設計の代替としての可能性を強調している。
関連論文リスト
- Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWGは拡散に基づくニューラルネットワーク重み生成技術であり、転送学習のために高性能な重みを効率よく生成する。
本稿では,ニューラルネットワーク重み生成のための遅延拡散パラダイムを再放送するために,生成的ハイパー表現学習を拡張した。
我々のアプローチは大規模言語モデル(LLM)のような大規模アーキテクチャにスケーラブルであり、現在のパラメータ生成技術の限界を克服しています。
論文 参考訳(メタデータ) (2024-02-28T08:34:23Z) - Practical Probabilistic Model-based Deep Reinforcement Learning by
Integrating Dropout Uncertainty and Trajectory Sampling [7.179313063022576]
本稿では,ニューラルネットワーク上に構築された現在の確率モデルベース強化学習(MBRL)の予測安定性,予測精度,制御能力について述べる。
トラジェクトリサンプリング(DPETS)を用いた新しいアプローチであるドロップアウト型確率アンサンブルを提案する。
論文 参考訳(メタデータ) (2023-09-20T06:39:19Z) - Inferring Smooth Control: Monte Carlo Posterior Policy Iteration with
Gaussian Processes [39.411957858548355]
オンラインシーケンシャル推論を用いて,よりスムーズなモデル予測因子制御を実現する方法を示す。
提案手法は,いくつかのロボット制御タスクにおいて,従来の手法と一致し,スムーズさを確保しつつ評価する。
論文 参考訳(メタデータ) (2022-10-07T12:56:31Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - Adaptive Model Predictive Control by Learning Classifiers [26.052368583196426]
制御パラメータとモデルパラメータを自動的に推定する適応型MPC変種を提案する。
我々は,BOを密度比推定として定式化できることを示す最近の結果を活用する。
その後、これはモデル予測経路積分制御フレームワークに統合され、様々な困難なロボティクスタスクのための堅牢なコントローラを生成する。
論文 参考訳(メタデータ) (2022-03-13T23:22:12Z) - Stochastic Deep Model Reference Adaptive Control [9.594432031144715]
本稿では,ディープニューラルネットワークを用いたモデル参照適応制御を提案する。
Deep Model Reference Adaptive Controlは、DNNモデルの出力層重みをリアルタイムに適応させるために、リアプノフ法を用いる。
データ駆動型教師付き学習アルゴリズムは、内部層パラメータの更新に使用される。
論文 参考訳(メタデータ) (2021-08-04T14:05:09Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
ガウス過程(GP)のような確率モデルは、制御設計に続く使用のためのデータから未知の動的システムを学ぶための強力なツールです。
本稿では、確率的安定性マージンに関して堅牢なコントローラを生成する線形化GPダイナミクスのための新しいコントローラ合成について述べる。
論文 参考訳(メタデータ) (2021-05-17T08:36:18Z) - Generating Probabilistic Safety Guarantees for Neural Network
Controllers [30.34898838361206]
ダイナミクスモデルを使用して、ニューラルネットワークコントローラが安全に動作するために保持する必要がある出力プロパティを決定します。
ニューラルネットワークポリシの近似を効率的に生成するための適応的検証手法を開発した。
本手法は,航空機衝突回避ニューラルネットワークの確率的安全性を保証することができることを示す。
論文 参考訳(メタデータ) (2021-03-01T18:48:21Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
武器の脅威検出とライブビデオからの攻撃的な行動は、潜在的に致命的な事故の迅速検出と予防に使用できる。
これを実現する一つの方法は、人工知能と、特に画像分析のための機械学習を使用することです。
従来のモノリシックなエンド・ツー・エンドのディープラーニングモデルと、セマンティクスセグメンテーションによって火花を検知する単純なニューラルネットワークのアンサンブルに基づく前述したモデルを比較した。
論文 参考訳(メタデータ) (2020-12-17T15:19:29Z) - How Training Data Impacts Performance in Learning-based Control [67.7875109298865]
本稿では,トレーニングデータの密度と制御性能の関係を考察する。
データセットの品質尺度を定式化し、$rho$-gap と呼ぶ。
フィードバック線形化制御法に$rho$-gapを適用する方法を示す。
論文 参考訳(メタデータ) (2020-05-25T12:13:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。