論文の概要: Imitation Learning of MPC with Neural Networks: Error Guarantees and Sparsification
- arxiv url: http://arxiv.org/abs/2501.03671v1
- Date: Tue, 07 Jan 2025 10:18:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-08 15:48:59.008039
- Title: Imitation Learning of MPC with Neural Networks: Error Guarantees and Sparsification
- Title(参考訳): ニューラルネットワークを用いたMPCの模倣学習:誤差保証とスパーシフィケーション
- Authors: Hendrik Alsmeier, Lukas Theiner, Anton Savchenko, Ali Mesbah, Rolf Findeisen,
- Abstract要約: 本稿では,ニューラルネットワークを用いた模倣モデル予測制御系における近似誤差の有界化のためのフレームワークを提案する。
本稿では,この手法を用いて,性能保証付き安定型ニューラルネットワークコントローラを設計する方法について論じる。
- 参考スコア(独自算出の注目度): 5.260346080244568
- License:
- Abstract: This paper presents a framework for bounding the approximation error in imitation model predictive controllers utilizing neural networks. Leveraging the Lipschitz properties of these neural networks, we derive a bound that guides dataset design to ensure the approximation error remains at chosen limits. We discuss how this method can be used to design a stable neural network controller with performance guarantees employing existing robust model predictive control approaches for data generation. Additionally, we introduce a training adjustment, which is based on the sensitivities of the optimization problem and reduces dataset density requirements based on the derived bounds. We verify that the proposed augmentation results in improvements to the network's predictive capabilities and a reduction of the Lipschitz constant. Moreover, on a simulated inverted pendulum problem, we show that the approach results in a closer match of the closed-loop behavior between the imitation and the original model predictive controller.
- Abstract(参考訳): 本稿では,ニューラルネットワークを用いた模倣モデル予測制御系における近似誤差のバウンド化のためのフレームワークを提案する。
これらのニューラルネットワークのリプシッツ特性を活用して、近似誤差が選択された極限に残ることを保証するためにデータセット設計をガイドする境界を導出する。
データ生成に頑健なモデル予測制御を用いた性能保証付き安定型ニューラルネットワークコントローラの設計法について検討する。
さらに、最適化問題の感度に基づいてトレーニング調整を導入し、導出境界に基づくデータセット密度要求を低減させる。
提案手法により,ネットワークの予測性能が向上し,リプシッツ定数が減少することを確認した。
さらに, 擬似逆振り子問題において, 模擬モデルと原モデル予測制御器との閉ループ挙動の密接な一致が得られた。
関連論文リスト
- Neural Conformal Control for Time Series Forecasting [54.96087475179419]
非定常環境における適応性を高める時系列のニューラルネットワーク共形予測手法を提案する。
提案手法は,ニューラルネットワークエンコーダを用いた補助的マルチビューデータを活用することにより,望ましい対象範囲を達成するために設計されたニューラルネットワークコントローラとして機能する。
予測間隔の整合性に優れたキャリブレーションを組み合わさった手法は, 適用範囲と確率的精度の大幅な向上を実証的に示す。
論文 参考訳(メタデータ) (2024-12-24T03:56:25Z) - Variational Bayesian Bow tie Neural Networks with Shrinkage [0.276240219662896]
我々は、標準フィードフォワード修正ニューラルネットワークの緩和版を構築した。
我々は、条件付き線形およびガウス的モデルをレンダリングするために、Polya-Gammaデータ拡張トリックを用いる。
層間における分布仮定や独立性を回避する変分推論アルゴリズムを導出する。
論文 参考訳(メタデータ) (2024-11-17T17:36:30Z) - Mapping back and forth between model predictive control and neural networks [0.0]
2次コストと線形制約を持つ線形系に対するモデル予測制御(MPC)は、暗黙のニューラルネットワークとして正確に表現されていることを示す。
また、MPCの暗黙のニューラルネットワークを明示的なニューラルネットワークに"解き放つ"方法も導入されている。
論文 参考訳(メタデータ) (2024-04-18T09:29:08Z) - Learning to Precode for Integrated Sensing and Communications Systems [11.689567114100514]
我々はISACシステムのための送信プリコーダを設計するための教師なし学習ニューラルモデルを提案する。
提案手法は,チャネル推定誤差が存在する場合,従来の最適化手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-03-11T11:24:18Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
我々は、モデルミス特定を前進させるのに堅牢な逆問題を解決するためのディープニューラルネットワークについて検討する。
我々は,アルゴリズムの展開手法を根底にある回復問題のロバストバージョンに適用することにより,新しい堅牢なディープニューラルネットワークアーキテクチャを設計する。
提案したRESTネットワークは,圧縮センシングとレーダイメージングの両問題において,最先端のモデルベースおよびデータ駆動アルゴリズムを上回る性能を示す。
論文 参考訳(メタデータ) (2021-10-20T06:15:45Z) - Robust Implicit Networks via Non-Euclidean Contractions [63.91638306025768]
暗黙のニューラルネットワークは、精度の向上とメモリ消費の大幅な削減を示す。
彼らは不利な姿勢と収束の不安定さに悩まされる。
本論文は,ニューラルネットワークを高機能かつ頑健に設計するための新しい枠組みを提供する。
論文 参考訳(メタデータ) (2021-06-06T18:05:02Z) - Performance Bounds for Neural Network Estimators: Applications in Fault
Detection [2.388501293246858]
ニューラルネットワークの堅牢性を定量化し,モデルに基づく異常検知器の構築とチューニングを行った。
チューニングでは,通常動作で想定される誤報発生率の上限を具体的に提示する。
論文 参考訳(メタデータ) (2021-03-22T19:23:08Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Neural Control Variates [71.42768823631918]
ニューラルネットワークの集合が、積分のよい近似を見つけるという課題に直面していることを示す。
理論的に最適な分散最小化損失関数を導出し、実際に安定したオンライントレーニングを行うための代替の複合損失を提案する。
具体的には、学習した光場近似が高次バウンスに十分な品質であることを示し、誤差補正を省略し、無視可能な可視バイアスのコストでノイズを劇的に低減できることを示した。
論文 参考訳(メタデータ) (2020-06-02T11:17:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。