論文の概要: Preserving Linear Separability in Continual Learning by Backward Feature
Projection
- arxiv url: http://arxiv.org/abs/2303.14595v1
- Date: Sun, 26 Mar 2023 00:35:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-28 18:47:05.677497
- Title: Preserving Linear Separability in Continual Learning by Backward Feature
Projection
- Title(参考訳): 後方特徴投影による連続学習における線形分離性維持
- Authors: Qiao Gu, Dongsub Shim, Florian Shkurti
- Abstract要約: 特徴空間における知識蒸留に基づく手法が提案され, 忘れを減らした。
本稿では,新しい特徴を学習可能な線形変換に変換するための連続学習手法である後方特徴投影(BFP)を提案する。
BFPは古いクラスの線形分離性を保ちつつ、新しいフィーチャの方向が新しいクラスに対応できるようにしている。
- 参考スコア(独自算出の注目度): 16.780058676633917
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Catastrophic forgetting has been a major challenge in continual learning,
where the model needs to learn new tasks with limited or no access to data from
previously seen tasks. To tackle this challenge, methods based on knowledge
distillation in feature space have been proposed and shown to reduce
forgetting. However, most feature distillation methods directly constrain the
new features to match the old ones, overlooking the need for plasticity. To
achieve a better stability-plasticity trade-off, we propose Backward Feature
Projection (BFP), a method for continual learning that allows the new features
to change up to a learnable linear transformation of the old features. BFP
preserves the linear separability of the old classes while allowing the
emergence of new feature directions to accommodate new classes. BFP can be
integrated with existing experience replay methods and boost performance by a
significant margin. We also demonstrate that BFP helps learn a better
representation space, in which linear separability is well preserved during
continual learning and linear probing achieves high classification accuracy.
- Abstract(参考訳): 破滅的な忘れは、連続的な学習において大きな課題であり、モデルでは、以前見られたタスクからデータにアクセスできない、あるいは制限された、新しいタスクを学習する必要がある。
この課題に対処するため,特徴空間における知識蒸留に基づく手法が提案され,忘れの低減が図られている。
しかし、ほとんどの特徴蒸留法は、プラスチック性の必要性を見越して、新しい特徴を古いものと一致させるよう直接に制約している。
安定性と可塑性のトレードオフを改善するため,我々は,新しい特徴を学習可能な線形変換へと変化させる連続学習法である後方特徴投影法(bfp)を提案する。
BFPは古いクラスの線形分離性を保ちつつ、新しいフィーチャの方向が新しいクラスに対応できるようにしている。
BFPは既存のエクスペリエンスリプレイメソッドと統合することができ、パフォーマンスを大幅に向上させることができる。
また,BFPは連続学習中に線形分離性が良好に維持され,高い分類精度が得られるような表現空間の学習にも有効であることを示す。
関連論文リスト
- CLFace: A Scalable and Resource-Efficient Continual Learning Framework for Lifelong Face Recognition [0.0]
CLFaceは学習知識の保存と漸進的な拡張を目的とした継続的学習フレームワークである。
分類層を排除し、生涯学習を通して固定された資源効率の高いFRモデルをもたらす。
教師モデルの特徴埋め込みの向きを維持するために、幾何学保存蒸留スキームが組み込まれている。
論文 参考訳(メタデータ) (2024-11-21T06:55:43Z) - SLCA++: Unleash the Power of Sequential Fine-tuning for Continual Learning with Pre-training [68.7896349660824]
本稿では,Seq FTのレンズからの進行オーバーフィッティング問題を詳細に解析する。
過度に高速な表現学習と偏りのある分類層がこの問題を構成することを考慮し、先進的なSlow Learner with Alignment(S++)フレームワークを導入する。
提案手法は,バックボーンパラメータの学習率を選択的に減少させるスローラーナーと,ポストホック方式で不規則な分類層を整列させるアライメントを含む。
論文 参考訳(メタデータ) (2024-08-15T17:50:07Z) - Strike a Balance in Continual Panoptic Segmentation [60.26892488010291]
既存の知識の安定性と新しい情報への適応性のバランスをとるため,過去クラスのバックトレース蒸留を導入する。
また,リプレイ用サンプルセットのクラス分布と過去のトレーニングデータとの整合性を考慮したクラス比記憶戦略を導入する。
連続パノプティカルバランス(BalConpas)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2024-07-23T09:58:20Z) - Beyond Prompt Learning: Continual Adapter for Efficient Rehearsal-Free Continual Learning [22.13331870720021]
C-ADA (Continuous Adapter) という,RFCL タスクに対する超高速学習手法を提案する。
C-ADAは、CALの特定の重みを柔軟に拡張し、各タスクの新たな知識を学び、古い重みを凍結して以前の知識を保存する。
提案手法は,現状のSOTA(State-of-the-art)法よりも優れ,性能とトレーニング速度を大幅に向上させる。
論文 参考訳(メタデータ) (2024-07-14T17:40:40Z) - MCF-VC: Mitigate Catastrophic Forgetting in Class-Incremental Learning
for Multimodal Video Captioning [10.95493493610559]
マルチモーダルビデオキャプション(MCF-VC)のためのクラス増分学習におけるカタストロフィックフォーミングの軽減手法を提案する。
特徴レベルでの旧タスクと新タスクの知識特性をよりよく制約するために,2段階知識蒸留(TsKD)を作成した。
公開データセットMSR-VTTを用いた実験により,提案手法は古いサンプルを再生することなく過去のタスクを忘れることに対して著しく抵抗し,新しいタスクでうまく機能することを示した。
論文 参考訳(メタデータ) (2024-02-27T16:54:08Z) - Learning Prompt with Distribution-Based Feature Replay for Few-Shot Class-Incremental Learning [56.29097276129473]
分散型特徴再現(LP-DiF)を用いた学習プロンプト(Learning Prompt)という,シンプルで効果的なフレームワークを提案する。
新しいセッションでは,学習可能なプロンプトが古い知識を忘れないようにするため,擬似機能的リプレイ手法を提案する。
新しいセッションに進むと、古いクラスのディストリビューションと現在のセッションのトレーニングイメージを組み合わせて擬似フィーチャーをサンプリングして、プロンプトを最適化する。
論文 参考訳(メタデータ) (2024-01-03T07:59:17Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
継続的な学習は、モデルが以前に学習した情報を忘れてしまう破滅的な忘れ込みの課題を克服しようとする。
本稿では,パラメータ成長の制約を緩和し,破滅的な忘れを減らし,新しい事前手法を提案する。
以上の結果から, BAdamは, 単頭クラスインクリメンタル実験に挑戦する先行手法に対して, 最先端の性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2023-09-15T17:10:51Z) - MixBCT: Towards Self-Adapting Backward-Compatible Training [66.52766344751635]
そこで本研究では,単純かつ高効率な後方互換性学習法であるMixBCTを提案する。
大規模顔認識データセットMS1Mv3とIJB-Cについて実験を行った。
論文 参考訳(メタデータ) (2023-08-14T05:55:38Z) - New Insights on Relieving Task-Recency Bias for Online Class Incremental
Learning [37.888061221999294]
あらゆる設定において、オンラインクラスインクリメンタルラーニング(OCIL)はより困難であり、現実世界でより頻繁に遭遇する可能性がある。
安定性と塑性のトレードオフに対処するため,Adaptive Focus Shiftingアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-16T11:52:00Z) - FOSTER: Feature Boosting and Compression for Class-Incremental Learning [52.603520403933985]
ディープニューラルネットワークは、新しいカテゴリーを学ぶ際に破滅的な忘れ方に悩まされる。
本稿では,新たなカテゴリを適応的に学習するためのモデルとして,新しい2段階学習パラダイムFOSTERを提案する。
論文 参考訳(メタデータ) (2022-04-10T11:38:33Z) - Continually Learning Self-Supervised Representations with Projected
Functional Regularization [39.92600544186844]
近年の自己教師あり学習手法は高品質な画像表現を学習でき、教師ありの手法でギャップを埋めている。
これらの手法は、新たな知識を段階的に取得することができない -- 実際、主にIDデータによる事前学習フェーズとしてのみ使用される。
従来の知識を忘れないように,機能正規化の利用を提案する。
論文 参考訳(メタデータ) (2021-12-30T11:59:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。