GPT-PINN: Generative Pre-Trained Physics-Informed Neural Networks toward
non-intrusive Meta-learning of parametric PDEs
- URL: http://arxiv.org/abs/2303.14878v3
- Date: Thu, 8 Jun 2023 19:56:08 GMT
- Title: GPT-PINN: Generative Pre-Trained Physics-Informed Neural Networks toward
non-intrusive Meta-learning of parametric PDEs
- Authors: Yanlai Chen and Shawn Koohy
- Abstract summary: We propose the Generative Pre-Trained PINN (GPT-PINN) to mitigate both challenges in the setting of parametric PDEs.
As a network of networks, its outer-/meta-network is hyper-reduced with only one hidden layer having significantly reduced number of neurons.
The meta-network adaptively learns'' the parametric dependence of the system and grows'' this hidden layer one neuron at a time.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-Informed Neural Network (PINN) has proven itself a powerful tool to
obtain the numerical solutions of nonlinear partial differential equations
(PDEs) leveraging the expressivity of deep neural networks and the computing
power of modern heterogeneous hardware. However, its training is still
time-consuming, especially in the multi-query and real-time simulation
settings, and its parameterization often overly excessive. In this paper, we
propose the Generative Pre-Trained PINN (GPT-PINN) to mitigate both challenges
in the setting of parametric PDEs. GPT-PINN represents a brand-new
meta-learning paradigm for parametric systems. As a network of networks, its
outer-/meta-network is hyper-reduced with only one hidden layer having
significantly reduced number of neurons. Moreover, its activation function at
each hidden neuron is a (full) PINN pre-trained at a judiciously selected
system configuration. The meta-network adaptively ``learns'' the parametric
dependence of the system and ``grows'' this hidden layer one neuron at a time.
In the end, by encompassing a very small number of networks trained at this set
of adaptively-selected parameter values, the meta-network is capable of
generating surrogate solutions for the parametric system across the entire
parameter domain accurately and efficiently.
Related papers
- Enriched Physics-informed Neural Networks for Dynamic
Poisson-Nernst-Planck Systems [0.8192907805418583]
This paper proposes a meshless deep learning algorithm, enriched physics-informed neural networks (EPINNs) to solve dynamic Poisson-Nernst-Planck (PNP) equations.
The EPINNs takes the traditional physics-informed neural networks as the foundation framework, and adds the adaptive loss weight to balance the loss functions.
Numerical results indicate that the new method has better applicability than traditional numerical methods in solving such coupled nonlinear systems.
arXiv Detail & Related papers (2024-02-01T02:57:07Z) - Hypernetwork-based Meta-Learning for Low-Rank Physics-Informed Neural
Networks [24.14254861023394]
In this study, we suggest a path that potentially opens up a possibility for physics-informed neural networks (PINNs) to be considered as one such solver.
PINNs have pioneered a proper integration of deep-learning and scientific computing, but they require repetitive time-consuming training of neural networks.
We propose a lightweight low-rank PINNs containing only hundreds of model parameters and an associated hypernetwork-based meta-learning algorithm.
arXiv Detail & Related papers (2023-10-14T08:13:43Z) - PINNsFormer: A Transformer-Based Framework For Physics-Informed Neural Networks [22.39904196850583]
Physics-Informed Neural Networks (PINNs) have emerged as a promising deep learning framework for approximating numerical solutions to partial differential equations (PDEs)
We introduce a novel Transformer-based framework, termed PINNsFormer, designed to address this limitation.
PINNsFormer achieves superior generalization ability and accuracy across various scenarios, including PINNs failure modes and high-dimensional PDEs.
arXiv Detail & Related papers (2023-07-21T18:06:27Z) - Permutation Equivariant Neural Functionals [92.0667671999604]
This work studies the design of neural networks that can process the weights or gradients of other neural networks.
We focus on the permutation symmetries that arise in the weights of deep feedforward networks because hidden layer neurons have no inherent order.
In our experiments, we find that permutation equivariant neural functionals are effective on a diverse set of tasks.
arXiv Detail & Related papers (2023-02-27T18:52:38Z) - Characteristics-Informed Neural Networks for Forward and Inverse
Hyperbolic Problems [0.0]
We propose characteristic-informed neural networks (CINN) for solving forward and inverse problems involving hyperbolic PDEs.
CINN encodes the characteristics of the PDE in a general-purpose deep neural network trained with the usual MSE data-fitting regression loss.
Preliminary results indicate that CINN is able to improve on the accuracy of the baseline PINN, while being nearly twice as fast to train and avoiding non-physical solutions.
arXiv Detail & Related papers (2022-12-28T18:38:53Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
Physics-informed neural networks (PINNs) are revolutionizing science and engineering practice by bringing together the power of deep learning to bear on scientific computation.
Here, we propose Auto-PINN, which employs Neural Architecture Search (NAS) techniques to PINN design.
A comprehensive set of pre-experiments using standard PDE benchmarks allows us to probe the structure-performance relationship in PINNs.
arXiv Detail & Related papers (2022-05-27T03:24:31Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
Physics-informed neural networks (PINNs) provide a deep learning framework for numerically solving partial differential equations (PDEs)
We propose the generative adversarial neural network (GA-PINN), which integrates the generative adversarial (GA) mechanism with the structure of PINNs.
Inspired from the weighting strategy of the Adaboost method, we then introduce a point-weighting (PW) method to improve the training efficiency of PINNs.
arXiv Detail & Related papers (2022-05-18T06:50:44Z) - Learning Autonomy in Management of Wireless Random Networks [102.02142856863563]
This paper presents a machine learning strategy that tackles a distributed optimization task in a wireless network with an arbitrary number of randomly interconnected nodes.
We develop a flexible deep neural network formalism termed distributed message-passing neural network (DMPNN) with forward and backward computations independent of the network topology.
arXiv Detail & Related papers (2021-06-15T09:03:28Z) - Self-Adaptive Physics-Informed Neural Networks using a Soft Attention Mechanism [1.6114012813668932]
Physics-Informed Neural Networks (PINNs) have emerged as a promising application of deep neural networks to the numerical solution of nonlinear partial differential equations (PDEs)
We propose a fundamentally new way to train PINNs adaptively, where the adaptation weights are fully trainable and applied to each training point individually.
In numerical experiments with several linear and nonlinear benchmark problems, the SA-PINN outperformed other state-of-the-art PINN algorithm in L2 error.
arXiv Detail & Related papers (2020-09-07T04:07:52Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.