Explain, Adapt and Retrain: How to improve the accuracy of a PPM
classifier through different explanation styles
- URL: http://arxiv.org/abs/2303.14939v1
- Date: Mon, 27 Mar 2023 06:37:55 GMT
- Title: Explain, Adapt and Retrain: How to improve the accuracy of a PPM
classifier through different explanation styles
- Authors: Williams Rizzi and Chiara Di Francescomarino and Chiara Ghidini and
Fabrizio Maria Maggi
- Abstract summary: Recent papers have introduced a novel approach to explain why a Predictive Process Monitoring model for outcome-oriented predictions provides wrong predictions.
We show how to exploit the explanations to identify the most common features that induce a predictor to make mistakes in a semi-automated way.
- Score: 4.6281736192809575
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent papers have introduced a novel approach to explain why a Predictive
Process Monitoring (PPM) model for outcome-oriented predictions provides wrong
predictions. Moreover, they have shown how to exploit the explanations,
obtained using state-of-the art post-hoc explainers, to identify the most
common features that induce a predictor to make mistakes in a semi-automated
way, and, in turn, to reduce the impact of those features and increase the
accuracy of the predictive model. This work starts from the assumption that
frequent control flow patterns in event logs may represent important features
that characterize, and therefore explain, a certain prediction. Therefore, in
this paper, we (i) employ a novel encoding able to leverage DECLARE constraints
in Predictive Process Monitoring and compare the effectiveness of this encoding
with Predictive Process Monitoring state-of-the art encodings, in particular
for the task of outcome-oriented predictions; (ii) introduce a completely
automated pipeline for the identification of the most common features inducing
a predictor to make mistakes; and (iii) show the effectiveness of the proposed
pipeline in increasing the accuracy of the predictive model by validating it on
different real-life datasets.
Related papers
- Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
Diffusion models have led to significant advancements in generative modelling.
Yet their widespread adoption poses challenges regarding data attribution and interpretability.
In this paper, we aim to help address such challenges by developing an textitinfluence functions framework.
arXiv Detail & Related papers (2024-10-17T17:59:02Z) - Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
We propose a novel approach to explain the behavior of a black-box model under feature shifts.
We refer to our method that combines concepts from Optimal Transport and Shapley Values as Explanatory Performance Estimation.
arXiv Detail & Related papers (2024-08-24T18:28:19Z) - Boosted Control Functions [10.503777692702952]
This work aims to bridge the gap between causal effect estimation and prediction tasks.
We establish a novel connection between the field of distribution from machine learning, and simultaneous equation models and control function from econometrics.
Within this framework, we propose a strong notion of invariance for a predictive model and compare it with existing (weaker) versions.
arXiv Detail & Related papers (2023-10-09T15:43:46Z) - Prediction-Oriented Bayesian Active Learning [51.426960808684655]
Expected predictive information gain (EPIG) is an acquisition function that measures information gain in the space of predictions rather than parameters.
EPIG leads to stronger predictive performance compared with BALD across a range of datasets and models.
arXiv Detail & Related papers (2023-04-17T10:59:57Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
We train an auxiliary model with a self-supervised pretext task on top of an existing predictive model and use the self-supervised error as an additional feature to estimate nonconformity scores.
We empirically demonstrate the benefit of the additional information using both synthetic and real data on the efficiency (width), deficit, and excess of conformal prediction intervals.
arXiv Detail & Related papers (2023-02-23T18:57:14Z) - Loss-Controlling Calibration for Predictive Models [5.51361762392299]
We propose a learning framework for calibrating predictive models to make loss-controlling prediction for exchangeable data.
By comparison, the predictors built by the proposed loss-controlling approach are not limited to set predictors.
Our proposed method is applied to selective regression and high-impact weather forecasting problems.
arXiv Detail & Related papers (2023-01-11T09:44:55Z) - Performance Prediction Under Dataset Shift [1.1602089225841632]
We study the generalization capabilities of various performance prediction models to new domains by learning on generated synthetic perturbations.
We propose a natural and effortless uncertainty estimation of the predicted accuracy that ensures reliable use of performance predictors.
arXiv Detail & Related papers (2022-06-21T19:40:58Z) - Pathologies of Pre-trained Language Models in Few-shot Fine-tuning [50.3686606679048]
We show that pre-trained language models with few examples show strong prediction bias across labels.
Although few-shot fine-tuning can mitigate the prediction bias, our analysis shows models gain performance improvement by capturing non-task-related features.
These observations alert that pursuing model performance with fewer examples may incur pathological prediction behavior.
arXiv Detail & Related papers (2022-04-17T15:55:18Z) - Explainability in Process Outcome Prediction: Guidelines to Obtain
Interpretable and Faithful Models [77.34726150561087]
We define explainability through the interpretability of the explanations and the faithfulness of the explainability model in the field of process outcome prediction.
This paper contributes a set of guidelines named X-MOP which allows selecting the appropriate model based on the event log specifications.
arXiv Detail & Related papers (2022-03-30T05:59:50Z) - Explain and Predict, and then Predict Again [6.865156063241553]
We propose ExPred, that uses multi-task learning in the explanation generation phase effectively trading-off explanation and prediction losses.
We conduct an extensive evaluation of our approach on three diverse language datasets.
arXiv Detail & Related papers (2021-01-11T19:36:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.