論文の概要: Transformer-based Multi-Instance Learning for Weakly Supervised Object
Detection
- arxiv url: http://arxiv.org/abs/2303.14999v1
- Date: Mon, 27 Mar 2023 08:42:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-28 16:29:14.058107
- Title: Transformer-based Multi-Instance Learning for Weakly Supervised Object
Detection
- Title(参考訳): 弱教師付き物体検出のためのトランスベースマルチインスタンス学習
- Authors: Zhaofei Wang, Weijia Zhang, Min-Ling Zhang
- Abstract要約: Weakly Supervised Object Detection (WSOD)は、画像レベルのアノテーションのみを使用してオブジェクト検出モデルのトレーニングを可能にする。
Weakly Supervised Transformer Detection Network (WSTDN) をベースとしたWSODのバックボーンを提案する。
- 参考スコア(独自算出の注目度): 43.481591776038144
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Weakly Supervised Object Detection (WSOD) enables the training of object
detection models using only image-level annotations. State-of-the-art WSOD
detectors commonly rely on multi-instance learning (MIL) as the backbone of
their detectors and assume that the bounding box proposals of an image are
independent of each other. However, since such approaches only utilize the
highest score proposal and discard the potentially useful information from
other proposals, their independent MIL backbone often limits models to salient
parts of an object or causes them to detect only one object per class. To solve
the above problems, we propose a novel backbone for WSOD based on our tailored
Vision Transformer named Weakly Supervised Transformer Detection Network
(WSTDN). Our algorithm is not only the first to demonstrate that self-attention
modules that consider inter-instance relationships are effective backbones for
WSOD, but also we introduce a novel bounding box mining method (BBM) integrated
with a memory transfer refinement (MTR) procedure to utilize the instance
dependencies for facilitating instance refinements. Experimental results on
PASCAL VOC2007 and VOC2012 benchmarks demonstrate the effectiveness of our
proposed WSTDN and modified instance refinement modules.
- Abstract(参考訳): Weakly Supervised Object Detection (WSOD)は、画像レベルのアノテーションのみを使用してオブジェクト検出モデルのトレーニングを可能にする。
最先端のWSOD検出器は一般的に、検出器のバックボーンとしてマルチインスタンス学習(MIL)に依存し、画像のバウンディングボックスの提案が互いに独立していると仮定する。
しかしながら、そのようなアプローチは最高スコアの提案のみを利用し、潜在的に有用な情報を他の提案から取り除くため、独立したMILバックボーンは、モデルをオブジェクトの正常な部分に制限したり、クラス毎に1つのオブジェクトだけを検出するようにします。
上記の問題を解決するために,Weakly Supervised Transformer Detection Network (WSTDN) という名前の視覚変換器を用いた新しいWSODバックボーンを提案する。
我々のアルゴリズムは, インスタンス間関係を考慮した自己アテンションモジュールがWSODの有効なバックボーンであることを初めて示すだけでなく, メモリ転送改善(MTR)手順と統合されたバウンディングボックスマイニング(BBM)手法を導入し, インスタンス依存性を利用してインスタンスのリファインメントを容易にする。
PASCAL VOC2007 および VOC2012 ベンチマーク実験の結果,提案した WSTDN および修正インスタンスリファインメントモジュールの有効性が示された。
関連論文リスト
- Sparse Semi-DETR: Sparse Learnable Queries for Semi-Supervised Object Detection [12.417754433715903]
Sparse Semi-DETRは、トランスフォーマーをベースとした、エンドツーエンドの半教師付きオブジェクト検出ソリューションである。
Sparse Semi-DETR には Query Refinement Module が組み込まれており、オブジェクトクエリの品質を高め、小型で部分的に隠されたオブジェクトの検出能力を著しく改善している。
MS-COCOおよびPascal VOCオブジェクト検出ベンチマークでは、Sparse Semi-DETRは現在の最先端手法よりも大幅に改善されている。
論文 参考訳(メタデータ) (2024-04-02T10:22:23Z) - Cross-Domain Few-Shot Object Detection via Enhanced Open-Set Object Detector [72.05791402494727]
本稿では,CD-FSODを用いたクロスドメイン小ショット検出法について検討する。
最小限のラベル付き例で、新しいドメインのための正確なオブジェクト検出器を開発することを目的としている。
論文 参考訳(メタデータ) (2024-02-05T15:25:32Z) - Occlusion-Aware Detection and Re-ID Calibrated Network for Multi-Object
Tracking [38.36872739816151]
検出器内のOAA(Occlusion-Aware Attention)モジュールは、隠蔽された背景領域を抑えながらオブジェクトの特徴を強調する。
OAAは、隠蔽される可能性のある物体の検出器を強化する変調器として機能する。
最適輸送問題に基づくRe-ID埋め込みマッチングブロックを設計する。
論文 参考訳(メタデータ) (2023-08-30T06:56:53Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
ジェネリックな方法でオブジェクトを発見できるため、教師なしのオブジェクト発見は有望である。
画像から高レベルな意味的特徴を抽出する意味誘導型自己教師学習モデルを設計する。
オブジェクト領域のローカライズのための主成分分析(PCA)を導入する。
論文 参考訳(メタデータ) (2023-07-07T04:03:48Z) - Scaling Novel Object Detection with Weakly Supervised Detection
Transformers [21.219817483091166]
Weakly Supervised Detection Transformerを提案する。これは大規模な事前学習データセットからWSODファインタニングへの効率的な知識伝達を可能にする。
提案手法は, 大規模オブジェクト検出データセットにおいて, 従来の最先端モデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-07-11T21:45:54Z) - Plug-and-Play Few-shot Object Detection with Meta Strategy and Explicit
Localization Inference [78.41932738265345]
本稿では, 微調整を行なわずに新しいカテゴリーの物体を正確に検出できるプラグ検出器を提案する。
局所化プロセスに2つの明示的な推論を導入し、アノテーション付きデータへの依存を減らす。
これは、様々な評価プロトコルの下で、効率、精度、リコールの両方において大きなリードを示している。
論文 参考訳(メタデータ) (2021-10-26T03:09:57Z) - Discovery-and-Selection: Towards Optimal Multiple Instance Learning for
Weakly Supervised Object Detection [86.86602297364826]
複数インスタンス学習(DS-MIL)と融合した発見・選択手法を提案する。
我々の提案するDS-MILアプローチは,最先端の性能を報告しながら,ベースラインを一貫して改善することができる。
論文 参考訳(メタデータ) (2021-10-18T07:06:57Z) - Object Detection Made Simpler by Eliminating Heuristic NMS [70.93004137521946]
単純なNMSのないエンドツーエンドのオブジェクト検出フレームワークを示す。
検出精度は元の1段検出器と比べて同等か、さらに向上した。
論文 参考訳(メタデータ) (2021-01-28T02:38:29Z) - Distilling Knowledge from Refinement in Multiple Instance Detection
Networks [0.0]
弱教師付きオブジェクト検出(WSOD)は、ラベル付き画像カテゴリのみを監督として、オブジェクト検出の問題に取り組むことを目的としている。
そこで本研究では,各改良モジュールの監督期間中に,基幹クラス,背景,あるいは無視されるボックスの選択基準を動的に変更する適応型監視アグリゲーション機能を提案する。
論文 参考訳(メタデータ) (2020-04-23T02:49:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。