論文の概要: An ontology-aided, natural language-based approach for multi-constraint
BIM model querying
- arxiv url: http://arxiv.org/abs/2303.15116v1
- Date: Mon, 27 Mar 2023 11:35:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-28 15:43:07.048779
- Title: An ontology-aided, natural language-based approach for multi-constraint
BIM model querying
- Title(参考訳): 多制約BIMモデルクエリのためのオントロジー支援自然言語ベースアプローチ
- Authors: Mengtian Yin, Llewellyn Tang, Chris Webster, Shen Xu, Xiongyi Li,
Huaquan Ying
- Abstract要約: 本稿では,異なる制約を含む自然言語クエリ(NLQ)を,複雑なBIMモデルを問合せするためのコンピュータ可読コードに自動的にマッピングする,新しいオントロジー支援セマンティクスを提案する。
実世界の住宅ビルの設計チェックに関する事例研究は,建設業における提案手法の実践的価値を実証している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Being able to efficiently retrieve the required building information is
critical for construction project stakeholders to carry out their engineering
and management activities. Natural language interface (NLI) systems are
emerging as a time and cost-effective way to query Building Information Models
(BIMs). However, the existing methods cannot logically combine different
constraints to perform fine-grained queries, dampening the usability of natural
language (NL)-based BIM queries. This paper presents a novel ontology-aided
semantic parser to automatically map natural language queries (NLQs) that
contain different attribute and relational constraints into computer-readable
codes for querying complex BIM models. First, a modular ontology was developed
to represent NL expressions of Industry Foundation Classes (IFC) concepts and
relationships, and was then populated with entities from target BIM models to
assimilate project-specific information. Hereafter, the ontology-aided semantic
parser progressively extracts concepts, relationships, and value restrictions
from NLQs to fully identify constraint conditions, resulting in standard SPARQL
queries with reasoning rules to successfully retrieve IFC-based BIM models. The
approach was evaluated based on 225 NLQs collected from BIM users, with a 91%
accuracy rate. Finally, a case study about the design-checking of a real-world
residential building demonstrates the practical value of the proposed approach
in the construction industry.
- Abstract(参考訳): 必要な建物情報を効率的に取得できることは、建設プロジェクトのステークホルダーがエンジニアリングやマネジメント活動を行う上で非常に重要です。
自然言語インタフェース(NLI)システムは、ビルディング情報モデル(BIM)に問い合わせる時間と費用効率のよい方法として登場しつつある。
しかし、既存の手法では、異なる制約を論理的に組み合わせて細かなクエリを実行できるため、自然言語(NL)ベースのBIMクエリの使用性が低下する。
本稿では,異なる属性と関係制約を含む自然言語クエリ(NLQ)を,複雑なBIMモデルを問合せするためのコンピュータ可読コードに自動的にマッピングする,オントロジー支援型セマンティックパーサを提案する。
まず,IFCの概念と関係のNL表現を表現するためにモジュールオントロジーが開発され,対象とするBIMモデルから,プロジェクト固有の情報を同化するためのエンティティに集約された。
その後、オントロジー支援セマンティックパーザは、NLQから概念、関係、および値の制約を段階的に抽出し、制約条件を完全に識別する。
提案手法は,BIMユーザから収集した225NLQを91%の精度で評価した。
最後に, 実世界の住宅の設計検査を事例として, 建設業における提案手法の実用的価値を示す。
関連論文リスト
- Matchmaker: Self-Improving Large Language Model Programs for Schema Matching [60.23571456538149]
本稿では,スキーママッチングのための合成言語モデルプログラムを提案する。
Matchmakerは、ラベル付きデモを必要とせずに、ゼロショットで自己改善する。
実証的に、Matchmakerが以前のMLベースのアプローチより優れている実世界の医療スキーママッチングベンチマークを実証する。
論文 参考訳(メタデータ) (2024-10-31T16:34:03Z) - BabelBench: An Omni Benchmark for Code-Driven Analysis of Multimodal and Multistructured Data [61.936320820180875]
大規模言語モデル(LLM)は、様々な領域でますます重要になっている。
BabelBenchは、コード実行によるマルチモーダルなマルチ構造化データ管理におけるLLMの熟練度を評価する革新的なベンチマークフレームワークである。
BabelBenchの実験結果から,ChatGPT 4のような最先端モデルでさえ,大幅な改善の余地があることが示唆された。
論文 参考訳(メタデータ) (2024-10-01T15:11:24Z) - A Large Language Model and Denoising Diffusion Framework for Targeted Design of Microstructures with Commands in Natural Language [0.0]
自然言語処理(NLP)、大言語モデル(LLM)、拡散確率モデル(DDPM)を統合したフレームワークを提案する。
我々のフレームワークは、事前訓練されたLLMによって駆動されるコンテキストデータ拡張を用いて、多様なマイクロ構造記述子のデータセットを生成し、拡張する。
再学習されたNERモデルは、ユーザが提供する自然言語入力から関連するマイクロ構造記述子を抽出し、DDPMによってターゲットとなる機械的特性とトポロジ的特徴を持つマイクロ構造を生成する。
論文 参考訳(メタデータ) (2024-09-22T14:45:22Z) - Michelangelo: Long Context Evaluations Beyond Haystacks via Latent Structure Queries [54.325172923155414]
ミケランジェロ(Michelangelo)は、大規模言語モデルに対する最小限の、合成的で、未学習の長文推論評価である。
この評価は、任意に長いコンテキストに対する評価のための、新しく統一された枠組みによって導出される。
論文 参考訳(メタデータ) (2024-09-19T10:38:01Z) - Text2BIM: Generating Building Models Using a Large Language Model-based Multi-Agent Framework [0.3749861135832073]
Text2 BIMは、自然言語命令から3Dビルディングモデルを生成するマルチエージェントフレームワークである。
エージェントワークフローにルールベースのモデルチェッカーを導入し、LLMエージェントを誘導し、生成されたモデル内の問題を解決する。
このフレームワークは、ユーザ入力によって定義された抽象概念に沿った、高品質で構造的に合理的なビルディングモデルを効果的に生成することができる。
論文 参考訳(メタデータ) (2024-08-15T09:48:45Z) - Chatbot-Based Ontology Interaction Using Large Language Models and Domain-Specific Standards [41.19948826527649]
大規模言語モデル(LLM)は、SPARQLクエリ生成を強化するために使用される。
システムはユーザーの問い合わせを正確なSPARQLクエリに変換する。
確立されたドメイン固有の標準からの追加情報がインターフェースに統合される。
論文 参考訳(メタデータ) (2024-07-22T11:58:36Z) - UQE: A Query Engine for Unstructured Databases [71.49289088592842]
構造化されていないデータ分析を可能にするために,大規模言語モデルの可能性を検討する。
本稿では,非構造化データ収集からの洞察を直接問合せ,抽出するUniversal Query Engine (UQE)を提案する。
論文 参考訳(メタデータ) (2024-06-23T06:58:55Z) - Interactive-KBQA: Multi-Turn Interactions for Knowledge Base Question Answering with Large Language Models [7.399563588835834]
Interactive-KBQAは知識ベース(KB)との直接インタラクションを通じて論理形式を生成するように設計されたフレームワークである
提案手法は,WebQuestionsSP, ComplexWebQuestions, KQA Pro, MetaQAデータセット上での競合結果を実現する。
論文 参考訳(メタデータ) (2024-02-23T06:32:18Z) - SymbolicAI: A framework for logic-based approaches combining generative models and solvers [9.841285581456722]
生成過程における概念学習とフロー管理に論理的アプローチを取り入れた,汎用的でモジュール化されたフレームワークであるSybolicAIを紹介する。
我々は,大規模言語モデル(LLM)を,自然言語命令と形式言語命令の両方に基づいてタスクを実行する意味的解決器として扱う。
論文 参考訳(メタデータ) (2024-02-01T18:50:50Z) - Schema-aware Reference as Prompt Improves Data-Efficient Knowledge Graph
Construction [57.854498238624366]
本稿では,データ効率のよい知識グラフ構築のためのRAP(Schema-Aware Reference As Prompt)の検索手法を提案する。
RAPは、人間の注釈付きおよび弱教師付きデータから受け継いだスキーマと知識を、各サンプルのプロンプトとして動的に活用することができる。
論文 参考訳(メタデータ) (2022-10-19T16:40:28Z) - Text Modular Networks: Learning to Decompose Tasks in the Language of
Existing Models [61.480085460269514]
本稿では,既存のモデルで解けるより単純なモデルに分解することで,複雑なタスクを解くための解釈可能なシステムを構築するためのフレームワークを提案する。
我々はこのフレームワークを用いて、ニューラルネットワークのファクトイド単一スパンQAモデルとシンボリック電卓で答えられるサブクエストに分解することで、マルチホップ推論問題に答えられるシステムであるModularQAを構築する。
論文 参考訳(メタデータ) (2020-09-01T23:45:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。