論文の概要: Large Language Models Meet Symbolic Provers for Logical Reasoning Evaluation
- arxiv url: http://arxiv.org/abs/2502.06563v2
- Date: Sun, 02 Mar 2025 16:38:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-04 16:10:12.398307
- Title: Large Language Models Meet Symbolic Provers for Logical Reasoning Evaluation
- Title(参考訳): 論理的推論評価のための記号型プロバーを用いた大規模言語モデル
- Authors: Chengwen Qi, Ren Ma, Bowen Li, He Du, Binyuan Hui, Jinwang Wu, Yuanjun Laili, Conghui He,
- Abstract要約: 一階述語論理(FOL)推論はインテリジェントシステムにおいて重要である。
既存のベンチマークは、広範囲の人間のアノテーションや手作りテンプレートに依存していることが多い。
本稿では,大言語モデルの生成強度を記号型プローサの厳密性と精度で相乗化するProverGenという新しいフレームワークを提案する。
- 参考スコア(独自算出の注目度): 24.081573908824353
- License:
- Abstract: First-order logic (FOL) reasoning, which involves sequential deduction, is pivotal for intelligent systems and serves as a valuable task for evaluating reasoning capabilities, particularly in chain-of-thought (CoT) contexts. Existing benchmarks often rely on extensive human annotation or handcrafted templates, making it difficult to achieve the necessary complexity, scalability, and diversity for robust evaluation. To address these limitations, we propose a novel framework called ProverGen that synergizes the generative strengths of Large Language Models (LLMs) with the rigor and precision of symbolic provers, enabling the creation of a scalable, diverse, and high-quality FOL reasoning dataset, ProverQA. ProverQA is also distinguished by its inclusion of accessible and logically coherent intermediate reasoning steps for each problem. Our evaluation shows that state-of-the-art LLMs struggle to solve ProverQA problems, even with CoT prompting, highlighting the dataset's challenging nature. We also finetune Llama3.1-8B-Instruct on a separate training set generated by our framework. The finetuned model demonstrates consistent improvements on both in-distribution and out-of-distribution test sets, suggesting the value of our proposed data generation framework. Code available at: https://github.com/opendatalab/ProverGen
- Abstract(参考訳): 逐次推論を伴う一階述語論理(FOL)推論は、インテリジェントシステムにおいて重要であり、特にチェーン・オブ・シント(CoT)コンテキストにおいて、推論能力を評価するための貴重なタスクとして機能する。
既存のベンチマークはしばしば人間のアノテーションや手作りテンプレートに依存しており、堅牢な評価のために必要な複雑さ、スケーラビリティ、多様性を達成するのが困難である。
これらの制約に対処するため,我々は ProverGen という新しいフレームワークを提案し,Large Language Models (LLMs) の生成強度と記号プローサの厳密さと精度を相乗し,スケーラブルで多種多様で高品質な FOL 推論データセット ProverQA の作成を可能にする。
ProverQAはまた、各問題に対してアクセス可能で論理的に整合した中間推論ステップを含むことでも区別されている。
我々の評価では、CoTプロンプトでさえ、最先端のLLMがProverQAの問題を解決するのに苦労していることを示し、データセットの難しい性質を強調しています。
また、Llama3.1-8B-Instructune Llama3.1-8B-Instructuneは、フレームワークによって生成された個別のトレーニングセットに基づいています。
微調整モデルでは,分布内および分布外両方のテストセットが一貫した改善が示され,提案したデータ生成フレームワークの価値が示唆された。
https://github.com/opendatalab/ProverGen
関連論文リスト
- Reasoning-as-Logic-Units: Scaling Test-Time Reasoning in Large Language Models Through Logic Unit Alignment [21.12989936864145]
CoT(Chain-of-Thought)のプロンプトによって,大規模言語モデル(LLM)の推論能力の向上が期待できる。
本稿では、生成したプログラムと対応するNL記述との間に論理単位を整列させることにより、より信頼性の高い推論経路を構築するReasoning-as-Logic-Units (RaLU)を提案する。
論文 参考訳(メタデータ) (2025-02-05T08:23:18Z) - BRiTE: Bootstrapping Reinforced Thinking Process to Enhance Language Model Reasoning [78.63421517563056]
大規模言語モデル(LLM)は複雑な推論タスクにおいて顕著な機能を示した。
本稿では,新しいグラフィカルモデルを用いてLLM推論を定式化する統一確率的フレームワークを提案する。
本稿では,Bootstrapping Reinforced Thinking Process (BRiTE)アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2025-01-31T02:39:07Z) - TARGA: Targeted Synthetic Data Generation for Practical Reasoning over Structured Data [9.390415313514762]
TARGAは、手動のアノテーションなしで高関連性合成データを生成するフレームワークである。
これは、クローズソースモデルを使用する既存の非微調整手法よりも大幅に優れている。
非I.I.D.設定下では、優れたサンプル効率、堅牢性、一般化能力を示す。
論文 参考訳(メタデータ) (2024-12-27T09:16:39Z) - SRA-MCTS: Self-driven Reasoning Augmentation with Monte Carlo Tree Search for Code Generation [14.786100203787194]
大規模な言語モデルは、単純なコード生成タスクでは例外的なパフォーマンスを示しますが、複雑な問題に対処する上での課題に直面します。
本稿では,高品質な中間推論経路を自律的に生成するモデルであるSRA-MCTSを提案する。
我々の手法は、追加の監督を必要とせず、モデル自体を通して完全に機能する。
論文 参考訳(メタデータ) (2024-11-17T12:31:04Z) - Proof of Thought : Neurosymbolic Program Synthesis allows Robust and Interpretable Reasoning [1.3003982724617653]
大規模言語モデル(LLM)は自然言語処理に革命をもたらしたが、一貫性のない推論に苦戦している。
本研究では,LLM出力の信頼性と透明性を高めるフレームワークであるProof of Thoughtを紹介する。
主な貢献は、論理的整合性を高めるためのソート管理を備えた堅牢な型システム、事実的知識と推論的知識を明確に区別するための規則の明示である。
論文 参考訳(メタデータ) (2024-09-25T18:35:45Z) - Unlocking Reasoning Potential in Large Langauge Models by Scaling Code-form Planning [94.76546523689113]
CodePlanは、テキストコード形式の計画を生成し、追跡するフレームワークで、高いレベルの構造化された推論プロセスの概要を擬似コードで示します。
CodePlanは、洗練された推論タスク固有のリッチなセマンティクスと制御フローを効果的にキャプチャする。
反応を直接生成するのに比べて25.1%の相対的な改善が達成されている。
論文 参考訳(メタデータ) (2024-09-19T04:13:58Z) - A Large-Scale Evaluation of Speech Foundation Models [110.95827399522204]
音声処理ユニバーサルパフォーマンスベンチマーク(SUPERB)を構築し,基礎モデルパラダイムの有効性について検討する。
凍結基盤モデルを用いてSUPERBにおける音声処理タスクに対処する統合マルチタスクフレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-15T00:03:16Z) - ChainLM: Empowering Large Language Models with Improved Chain-of-Thought Prompting [124.69672273754144]
CoT(Chain-of-Thought)のプロンプトにより,大規模言語モデル(LLM)の推論能力が向上する
既存のCoTアプローチは通常、単純な推論タスクに重点を置いており、結果として低品質で一貫性のないCoTプロンプトをもたらす。
優れたCoTプロンプトの自動生成のための新しいフレームワークであるCoTGeniusを紹介する。
論文 参考訳(メタデータ) (2024-03-21T11:34:26Z) - SymbolicAI: A framework for logic-based approaches combining generative models and solvers [9.841285581456722]
生成過程における概念学習とフロー管理に論理的アプローチを取り入れた,汎用的でモジュール化されたフレームワークであるSybolicAIを紹介する。
我々は,大規模言語モデル(LLM)を,自然言語命令と形式言語命令の両方に基づいてタスクを実行する意味的解決器として扱う。
論文 参考訳(メタデータ) (2024-02-01T18:50:50Z) - MuSR: Testing the Limits of Chain-of-thought with Multistep Soft Reasoning [63.80739044622555]
自然言語ナラティブで指定されたソフト推論タスクの言語モデルを評価するデータセットである MuSR を紹介する。
このデータセットには2つの重要な特徴がある。まず、ニューロシンボリック合成-自然生成アルゴリズムによって生成される。
第二に、私たちのデータセットインスタンスは、実世界の推論の領域に対応する無料のテキスト物語です。
論文 参考訳(メタデータ) (2023-10-24T17:59:20Z) - Logical Natural Language Generation from Open-Domain Tables [107.04385677577862]
本稿では,その事実に関連付けられた自然言語文をモデルで生成するタスクを提案する。
提案した論理的 NLG 問題の研究を容易にするために,幅広い論理的・記号的推論を特徴とする既存の TabFact データセットcitechen 2019tabfact を用いる。
新しいタスクは、シーケンス順序と論理順序のミスマッチのため、既存のモノトニック生成フレームワークに課題をもたらす。
論文 参考訳(メタデータ) (2020-04-22T06:03:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。