Hybrid Quantum-Classical Normalizing Flow
- URL: http://arxiv.org/abs/2405.13808v1
- Date: Wed, 22 May 2024 16:37:22 GMT
- Title: Hybrid Quantum-Classical Normalizing Flow
- Authors: Anlei Zhang, Wei Cui,
- Abstract summary: We propose a hybrid quantum-classical normalizing flow (HQCNF) model based on parameterized quantum circuits.
We test our model on the image generation problem.
Compared with other quantum generative models, such as quantum generative adversarial networks (QGAN), our model achieves lower (better) Fr'echet distance (FID) score.
- Score: 5.85475369017678
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rapid development of quantum computing technology, we have entered the era of noisy intermediate-scale quantum (NISQ) computers. Therefore, designing quantum algorithms that adapt to the hardware conditions of current NISQ devices and can preliminarily solve some practical problems has become the focus of researchers. In this paper, we focus on quantum generative models in the field of quantum machine learning, and propose a hybrid quantum-classical normalizing flow (HQCNF) model based on parameterized quantum circuits. Based on the ideas of classical normalizing flow models and the characteristics of parameterized quantum circuits, we cleverly design the form of the ansatz and the hybrid method of quantum and classical computing, and derive the form of the loss function in the case that quantum computing is involved. We test our model on the image generation problem. Experimental results show that our model is capable of generating images of good quality. Compared with other quantum generative models, such as quantum generative adversarial networks (QGAN), our model achieves lower (better) Fr\'echet inception distance (FID) score, and compared with classical generative models, we can complete the image generation task with significantly fewer parameters. These results prove the advantage of our proposed model.
Related papers
- LatentQGAN: A Hybrid QGAN with Classical Convolutional Autoencoder [7.945302052915863]
A potential application of quantum machine learning is to harness the power of quantum computers for generating classical data.
We propose LatentQGAN, a novel quantum model that uses a hybrid quantum-classical GAN coupled with an autoencoder.
arXiv Detail & Related papers (2024-09-22T23:18:06Z) - Quantum Transfer Learning for MNIST Classification Using a Hybrid Quantum-Classical Approach [0.0]
This research explores the integration of quantum computing with classical machine learning for image classification tasks.
We propose a hybrid quantum-classical approach that leverages the strengths of both paradigms.
The experimental results indicate that while the hybrid model demonstrates the feasibility of integrating quantum computing with classical techniques, the accuracy of the final model, trained on quantum outcomes, is currently lower than the classical model trained on compressed features.
arXiv Detail & Related papers (2024-08-05T22:16:27Z) - A Quantum Leaky Integrate-and-Fire Spiking Neuron and Network [0.0]
We introduce a new software model for quantum neuromorphic computing.
We use these neurons as building blocks in the construction of a quantum spiking neural network (QSNN) and a quantum spiking convolutional neural network (QSCNN)
arXiv Detail & Related papers (2024-07-23T11:38:06Z) - Towards Efficient Quantum Hybrid Diffusion Models [68.43405413443175]
We propose a new methodology to design quantum hybrid diffusion models.
We propose two possible hybridization schemes combining quantum computing's superior generalization with classical networks' modularity.
arXiv Detail & Related papers (2024-02-25T16:57:51Z) - A Full Quantum Generative Adversarial Network Model for High Energy Physics Simulations [0.0]
We develop a quantum Generative Adversarial Network (GAN) model for generating downsized eight-pixel calorimeter shower images.
The advantage over previous quantum models is that the model generates real individual images containing pixel energy values.
Results of the full quantum GAN model are compared to hybrid quantum-classical models using a classical discriminator neural network.
arXiv Detail & Related papers (2023-05-12T06:57:31Z) - Learning hard distributions with quantum-enhanced Variational
Autoencoders [2.545905720487589]
We introduce a quantum-enhanced VAE (QeVAE) that uses quantum correlations to improve the fidelity over classical VAEs.
We empirically show that the QeVAE outperforms classical models on several classes of quantum states.
Our work paves the way for new applications of quantum generative learning algorithms.
arXiv Detail & Related papers (2023-05-02T16:50:24Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
We build over a proposed framework for evaluating the generalization performance of generative models.
We establish the first comparative race towards practical quantum advantage (PQA) between classical and quantum generative models.
Our results suggest that QCBMs are more efficient in the data-limited regime than the other state-of-the-art classical generative models.
arXiv Detail & Related papers (2023-03-27T22:48:28Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
We propose a new type of architecture for quantum generative adversarial networks (entangling quantum GAN, EQ-GAN)
We show that EQ-GAN has additional robustness against coherent errors and demonstrate the effectiveness of EQ-GAN experimentally in a Google Sycamore superconducting quantum processor.
arXiv Detail & Related papers (2021-04-30T20:38:41Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Quantum Deformed Neural Networks [83.71196337378022]
We develop a new quantum neural network layer designed to run efficiently on a quantum computer.
It can be simulated on a classical computer when restricted in the way it entangles input states.
arXiv Detail & Related papers (2020-10-21T09:46:12Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
We experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor.
Our work provides guidance for developing advanced quantum generative models on near-term quantum devices.
arXiv Detail & Related papers (2020-10-13T06:57:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.