論文の概要: System-status-aware Adaptive Network for Online Streaming Video
Understanding
- arxiv url: http://arxiv.org/abs/2303.15742v2
- Date: Sun, 9 Apr 2023 08:11:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-11 20:16:49.444167
- Title: System-status-aware Adaptive Network for Online Streaming Video
Understanding
- Title(参考訳): オンラインストリーミング映像理解のためのシステム統計対応適応ネットワーク
- Authors: Lin Geng Foo, Jia Gong, Zhipeng Fan, Jun Liu
- Abstract要約: 本稿では,端末のリアルタイム状態を考慮したシステム統計対応適応ネットワーク(SAN)を提案する。
エージェントのポリシーの使用により、システムの状態の変動に対する効率性と堅牢性が向上する。
- 参考スコア(独自算出の注目度): 5.398435847221957
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent years have witnessed great progress in deep neural networks for
real-time applications. However, most existing works do not explicitly consider
the general case where the device's state and the available resources fluctuate
over time, and none of them investigate or address the impact of varying
computational resources for online video understanding tasks. This paper
proposes a System-status-aware Adaptive Network (SAN) that considers the
device's real-time state to provide high-quality predictions with low delay.
Usage of our agent's policy improves efficiency and robustness to fluctuations
of the system status. On two widely used video understanding tasks, SAN obtains
state-of-the-art performance while constantly keeping processing delays low.
Moreover, training such an agent on various types of hardware configurations is
not easy as the labeled training data might not be available, or can be
computationally prohibitive. To address this challenging problem, we propose a
Meta Self-supervised Adaptation (MSA) method that adapts the agent's policy to
new hardware configurations at test-time, allowing for easy deployment of the
model onto other unseen hardware platforms.
- Abstract(参考訳): 近年、リアルタイムアプリケーションのためのディープニューラルネットワークは大きな進歩を遂げている。
しかしながら、既存のほとんどの研究は、デバイスの状態と利用可能なリソースが時間とともに変動する一般的なケースを明示的に考慮していない。
本稿では,装置のリアルタイム状態を考慮したシステム統計対応適応ネットワーク(SAN, System-status-aware Adaptive Network)を提案する。
エージェントのポリシーの使用は、システム状態の変動に対する効率とロバスト性を向上させる。
2つの広く使われているビデオ理解タスクにおいて、SANは処理遅延を常に低く保ちながら最先端のパフォーマンスを得る。
さらに,各種ハードウェア構成のエージェントをトレーニングするのは,ラベル付きトレーニングデータが入手できない場合や,計算が禁止される場合など,容易ではない。
この課題に対処するために,テスト時にエージェントのポリシーを新しいハードウェア構成に適応させるメタ自己監督適応 (msa) 手法を提案する。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Coverage-aware and Reinforcement Learning Using Multi-agent Approach for HD Map QoS in a Realistic Environment [8.853779271331508]
オフロードプロセスを最適化する効果的な方法の1つは、送信時間を最小化することである。
これはVehicular Adhoc Network(VANET)において特に当てはまり、車両はHD(High-Definition)マップデータを頻繁にダウンロードしてアップロードする。
論文 参考訳(メタデータ) (2024-07-19T12:40:07Z) - Real-time Threat Detection Strategies for Resource-constrained Devices [1.4815508281465273]
本稿では,ルータ内のDNSトンネリング攻撃を効果的に処理するエンド・ツー・エンド・プロセスを提案する。
我々は、MLモデルをトレーニングするためにステートレスな機能を利用することと、ネットワーク構成から独立して選択した機能を利用することで、非常に正確な結果が得られることを実証した。
さまざまな環境にまたがる組み込みデバイスに最適化されたこの慎重に構築されたモデルのデプロイにより、最小のレイテンシでDNSチューニングされた攻撃検出が可能になった。
論文 参考訳(メタデータ) (2024-03-22T10:02:54Z) - Age-Based Scheduling for Mobile Edge Computing: A Deep Reinforcement
Learning Approach [58.911515417156174]
我々は情報時代(AoI)の新たな定義を提案し、再定義されたAoIに基づいて、MECシステムにおけるオンラインAoI問題を定式化する。
本稿では,システム力学の部分的知識を活用するために,PDS(Post-Decision State)を導入する。
また、PSDと深いRLを組み合わせることで、アルゴリズムの適用性、スケーラビリティ、堅牢性をさらに向上します。
論文 参考訳(メタデータ) (2023-12-01T01:30:49Z) - Fluid Batching: Exit-Aware Preemptive Serving of Early-Exit Neural
Networks on Edge NPUs [74.83613252825754]
スマートエコシステム(smart ecosystems)"は、スタンドアロンではなく、センセーションが同時に行われるように形成されています。
これはデバイス上の推論パラダイムを、エッジにニューラル処理ユニット(NPU)をデプロイする方向にシフトしている。
そこで本研究では,実行時のプリエンプションが到着・終了プロセスによってもたらされる動的性を考慮に入れた,新しい早期終了スケジューリングを提案する。
論文 参考訳(メタデータ) (2022-09-27T15:04:01Z) - Real-Time GPU-Accelerated Machine Learning Based Multiuser Detection for
5G and Beyond [70.81551587109833]
非線形ビームフォーミングフィルタは、大規模な接続を伴う定常シナリオにおいて、線形アプローチを著しく上回る。
主な課題の1つは、これらのアルゴリズムのリアルタイム実装である。
本稿では,大規模並列化によるAPSMに基づくアルゴリズムの高速化について検討する。
論文 参考訳(メタデータ) (2022-01-13T15:20:45Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
本稿では,基本的なクロスプラットフォームテンソルフレームワークとスクリプト言語エンジンを使用しながら,すべての要件をサポートする統合デプロイメントパイプラインとフリー・ツー・オペレートアプローチを提案する。
しかし、このアプローチは、実際のプロダクショングレードシステムに機械学習機能を実際にデプロイするために必要な手順やパイプラインを提供していない。
論文 参考訳(メタデータ) (2021-12-22T14:45:37Z) - MCDS: AI Augmented Workflow Scheduling in Mobile Edge Cloud Computing
Systems [12.215537834860699]
近年,エッジコンピューティングプラットフォームの低応答時間を利用してアプリケーション品質・オブ・サービス(QoS)を最適化するスケジューリング手法が提案されている。
本稿では,Deep Surrogate Models を用いたモンテカルロ学習を用いて,モバイルエッジクラウドコンピューティングシステムにおけるワークフローアプリケーションを効率的にスケジューリングする手法を提案する。
論文 参考訳(メタデータ) (2021-12-14T10:00:01Z) - Better than the Best: Gradient-based Improper Reinforcement Learning for
Network Scheduling [60.48359567964899]
パケット遅延を最小限に抑えるため,制約付き待ち行列ネットワークにおけるスケジューリングの問題を考える。
我々は、利用可能な原子ポリシーよりも優れたスケジューラを生成するポリシー勾配に基づく強化学習アルゴリズムを使用する。
論文 参考訳(メタデータ) (2021-05-01T10:18:34Z) - Improving IoT Analytics through Selective Edge Execution [0.0]
エッジインフラストラクチャを活用して分析性能を向上させることを提案する。
我々は、IoTデバイスがそれらのルーチンをローカルに実行できるようにするアルゴリズムを考案した。
そして、それらをクラウドレットサーバにアウトソースします。
論文 参考訳(メタデータ) (2020-03-07T15:02:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。