論文の概要: A Multi-Granularity Matching Attention Network for Query Intent
Classification in E-commerce Retrieval
- arxiv url: http://arxiv.org/abs/2303.15870v1
- Date: Tue, 28 Mar 2023 10:25:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-29 15:37:30.851406
- Title: A Multi-Granularity Matching Attention Network for Query Intent
Classification in E-commerce Retrieval
- Title(参考訳): E-Commerce Retrievalにおけるクエリインテント分類のためのマルチグラニュリティマッチング注意ネットワーク
- Authors: Chunyuan Yuan, Yiming Qiu, Mingming Li, Haiqing Hu, Songlin Wang,
Sulong Xu
- Abstract要約: 本稿では,クエリインテント分類のためのMMAN(Multi-granularity Matching Attention Network)を提案する。
MMANには、セルフマッチングモジュール、シャルレベルマッチングモジュール、セマンティックレベルマッチングモジュールの3つのモジュールが含まれている。
我々は大規模なオフラインおよびオンラインA/B実験を行い、MMANが強いベースラインを著しく上回ることを示す。
- 参考スコア(独自算出の注目度): 9.034096715927731
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Query intent classification, which aims at assisting customers to find
desired products, has become an essential component of the e-commerce search.
Existing query intent classification models either design more exquisite models
to enhance the representation learning of queries or explore label-graph and
multi-task to facilitate models to learn external information. However, these
models cannot capture multi-granularity matching features from queries and
categories, which makes them hard to mitigate the gap in the expression between
informal queries and categories.
This paper proposes a Multi-granularity Matching Attention Network (MMAN),
which contains three modules: a self-matching module, a char-level matching
module, and a semantic-level matching module to comprehensively extract
features from the query and a query-category interaction matrix. In this way,
the model can eliminate the difference in expression between queries and
categories for query intent classification. We conduct extensive offline and
online A/B experiments, and the results show that the MMAN significantly
outperforms the strong baselines, which shows the superiority and effectiveness
of MMAN. MMAN has been deployed in production and brings great commercial value
for our company.
- Abstract(参考訳): 顧客が希望する製品を見つけるのを支援することを目的としたクエリインテント分類は、eコマース検索の重要なコンポーネントとなっている。
既存のクエリインテント分類モデルは、クエリの表現学習を強化するためにより優れたモデルを設計するか、モデルが外部情報を学ぶのを容易にするためにラベルグラフとマルチタスクを探索する。
しかし、これらのモデルはクエリやカテゴリから複数の粒度マッチング機能をキャプチャできないため、非公式なクエリとカテゴリ間の表現のギャップを緩和することは困難である。
本稿では,MMAN(Multi-granularity Matching Attention Network)を提案する。MMAN(Multi-granularity Matching Attention Network)は,クエリから特徴を包括的に抽出する自己マッチングモジュール,シャルレベルマッチングモジュール,セマンティックレベルマッチングモジュールの3つのモジュールを含む。
このようにして、このモデルはクエリとクエリ意図分類のカテゴリ間の表現の違いを取り除くことができる。
大規模なオフラインおよびオンラインA/B実験を行い、MMANがMMANの優位性と有効性を示す強力なベースラインを著しく上回ることを示す。
MMANは本番環境にデプロイされ、当社にとって大きな商業的価値をもたらしています。
関連論文リスト
- LLM-assisted Explicit and Implicit Multi-interest Learning Framework for Sequential Recommendation [50.98046887582194]
本研究では,ユーザの興味を2つのレベル – 行動と意味論 – でモデル化する,明示的で暗黙的な多目的学習フレームワークを提案する。
提案するEIMFフレームワークは,小型モデルとLLMを効果的に組み合わせ,多目的モデリングの精度を向上させる。
論文 参考訳(メタデータ) (2024-11-14T13:00:23Z) - Matchmaker: Self-Improving Large Language Model Programs for Schema Matching [60.23571456538149]
本稿では,スキーママッチングのための合成言語モデルプログラムを提案する。
Matchmakerは、ラベル付きデモを必要とせずに、ゼロショットで自己改善する。
実証的に、Matchmakerが以前のMLベースのアプローチより優れている実世界の医療スキーママッチングベンチマークを実証する。
論文 参考訳(メタデータ) (2024-10-31T16:34:03Z) - Multi-Grained Query-Guided Set Prediction Network for Grounded Multimodal Named Entity Recognition [9.506482334842293]
Grounded Multimodal Named Entity Recognition (GMNER) は、新しい情報抽出(IE)タスクである。
近年,機械読解やシーケンス生成に基づくフレームワークを用いた統一手法は,この難易度に限界を生じさせている。
そこで我々は,Multi-fine Query-guided Set Prediction Network (MQSPN) という新しい統合フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-17T05:42:43Z) - MMCL: Boosting Deformable DETR-Based Detectors with Multi-Class Min-Margin Contrastive Learning for Superior Prohibited Item Detection [8.23801404004195]
X線画像における禁止項目検出は、最も効果的なセキュリティ検査方法の1つである。
X線画像における特異な現象が重なり合うと、前景と背景の特徴が結合する。
コンテンツクエリのカテゴリ意味情報を明らかにするために,Multi-class Min-Margin Contrastive Learning (MMCL)法を提案する。
論文 参考訳(メタデータ) (2024-06-05T12:07:58Z) - MMGRec: Multimodal Generative Recommendation with Transformer Model [81.61896141495144]
MMGRecは、マルチモーダルレコメンデーションに生成パラダイムを導入することを目指している。
まず,階層的な量子化手法であるGraph CF-RQVAEを考案し,各項目にRec-IDを割り当てる。
次に、Transformerベースのレコメンデータをトレーニングし、過去のインタラクションシーケンスに基づいて、ユーザが推奨するアイテムのRec-IDを生成する。
論文 参考訳(メタデータ) (2024-04-25T12:11:27Z) - Beyond Semantics: Learning a Behavior Augmented Relevance Model with
Self-supervised Learning [25.356999988217325]
関連モデリングは、対応するクエリに対して望ましい項目を見つけることを目的としている。
ユーザの履歴行動データから抽出された補助的なクエリ-イテム相互作用は、ユーザの検索意図をさらに明らかにするためのヒントを提供する可能性がある。
本モデルでは, 隣接する視点と対象視点の両方から, 粗粒度および細粒度の意味表現を蒸留するための多レベルコアテンションを構築している。
論文 参考訳(メタデータ) (2023-08-10T06:52:53Z) - Named Entity and Relation Extraction with Multi-Modal Retrieval [51.660650522630526]
マルチモーダルな名前付きエンティティ認識(NER)と関係抽出(RE)は、関連画像情報を活用してNERとREの性能を向上させることを目的としている。
新たなマルチモーダル検索フレームワーク(MoRe)を提案する。
MoReはテキスト検索モジュールと画像ベースの検索モジュールを含み、入力されたテキストと画像の関連知識をそれぞれ知識コーパスで検索する。
論文 参考訳(メタデータ) (2022-12-03T13:11:32Z) - Semantic Representation and Dependency Learning for Multi-Label Image
Recognition [76.52120002993728]
本稿では,各カテゴリのカテゴリ固有のセマンティック表現を学習するための,新しい,効果的なセマンティック表現と依存性学習(SRDL)フレームワークを提案する。
具体的には,カテゴリー別注意領域(CAR)モジュールを設計し,チャネル/空間的注意行列を生成してモデルを導出する。
また、カテゴリ間のセマンティック依存を暗黙的に学習するオブジェクト消去(OE)モジュールを設計し、セマンティック認識領域を消去する。
論文 参考訳(メタデータ) (2022-04-08T00:55:15Z) - Extending CLIP for Category-to-image Retrieval in E-commerce [36.386210802938656]
Eコマースは、実際はほとんど活用されていないリッチなマルチモーダルデータを提供する。
実際には、テキストと与えられたカテゴリの視覚的表現の間には、しばしばミスマッチがある。
電子商取引におけるカテゴリ・ツー・イメージ検索の課題を紹介し,その課題のモデルであるCLIP-ITAを提案する。
論文 参考訳(メタデータ) (2021-12-21T15:33:23Z) - APRF-Net: Attentive Pseudo-Relevance Feedback Network for Query
Categorization [12.634704014206294]
クエリ分類のためのレアクエリの表現を強化するために,textbfAttentive textbfPseudo textbfRelevance textbfFeedback textbfNetwork (APRF-Net) という新しいディープニューラルネットワークを提案する。
以上の結果から,APRF-Netはクエリ分類をF1@1$スコアで5.9%改善し,レアクエリでは8.2%向上した。
論文 参考訳(メタデータ) (2021-04-23T02:34:08Z) - Query Focused Multi-Document Summarization with Distant Supervision [88.39032981994535]
既存の作業は、クエリとテキストセグメント間の関連性を推定する検索スタイルの手法に大きく依存している。
本稿では,クエリに関連するセグメントを推定するための個別モジュールを導入した粗大なモデリングフレームワークを提案する。
我々のフレームワークは、標準QFSベンチマークにおいて、強力な比較システムよりも優れていることを実証する。
論文 参考訳(メタデータ) (2020-04-06T22:35:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。