Medical Image Analysis using Deep Relational Learning
- URL: http://arxiv.org/abs/2303.16099v1
- Date: Tue, 28 Mar 2023 16:10:12 GMT
- Title: Medical Image Analysis using Deep Relational Learning
- Authors: Zhihua Liu
- Abstract summary: We propose a context-aware fully convolutional network that effectively models implicit relation information between features to perform medical image segmentation.
We then propose a new hierarchical homography estimation network to achieve accurate medical image mosaicing by learning the explicit spatial relationship between adjacent frames.
- Score: 1.8465474345655504
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the past ten years, with the help of deep learning, especially the rapid
development of deep neural networks, medical image analysis has made remarkable
progress. However, how to effectively use the relational information between
various tissues or organs in medical images is still a very challenging
problem, and it has not been fully studied. In this thesis, we propose two
novel solutions to this problem based on deep relational learning. First, we
propose a context-aware fully convolutional network that effectively models
implicit relation information between features to perform medical image
segmentation. The network achieves the state-of-the-art segmentation results on
the Multi Modal Brain Tumor Segmentation 2017 (BraTS2017) and Multi Modal Brain
Tumor Segmentation 2018 (BraTS2018) data sets. Subsequently, we propose a new
hierarchical homography estimation network to achieve accurate medical image
mosaicing by learning the explicit spatial relationship between adjacent
frames. We use the UCL Fetoscopy Placenta dataset to conduct experiments and
our hierarchical homography estimation network outperforms the other
state-of-the-art mosaicing methods while generating robust and meaningful
mosaicing result on unseen frames.
Related papers
- Development of CNN Architectures using Transfer Learning Methods for Medical Image Classification [0.294944680995069]
This paper investigates the development of CNN architectures using transfer learning techniques in the field of medical image classification.
Our findings help make an informed decision while selecting the optimum and state-of-the-art CNN architectures.
arXiv Detail & Related papers (2024-10-22T05:37:51Z) - Disease Classification and Impact of Pretrained Deep Convolution Neural Networks on Diverse Medical Imaging Datasets across Imaging Modalities [0.0]
This paper investigates the intricacies of using pretrained deep convolutional neural networks with transfer learning across diverse medical imaging datasets.
It shows that the use of pretrained models as fixed feature extractors yields poor performance irrespective of the datasets.
It is also found that deeper and more complex architectures did not necessarily result in the best performance.
arXiv Detail & Related papers (2024-08-30T04:51:19Z) - Applying Conditional Generative Adversarial Networks for Imaging Diagnosis [3.881664394416534]
This study introduces an innovative application of Conditional Generative Adversarial Networks (C-GAN) integrated with Stacked Hourglass Networks (SHGN)
We address the problem of overfitting, common in deep learning models applied to complex imaging datasets, by augmenting data through rotation and scaling.
A hybrid loss function combining L1 and L2 reconstruction losses, enriched with adversarial training, is introduced to refine segmentation processes in intravascular ultrasound (IVUS) imaging.
arXiv Detail & Related papers (2024-07-17T23:23:09Z) - Learning Multimodal Volumetric Features for Large-Scale Neuron Tracing [72.45257414889478]
We aim to reduce human workload by predicting connectivity between over-segmented neuron pieces.
We first construct a dataset, named FlyTracing, that contains millions of pairwise connections of segments expanding the whole fly brain.
We propose a novel connectivity-aware contrastive learning method to generate dense volumetric EM image embedding.
arXiv Detail & Related papers (2024-01-05T19:45:12Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Few-shot Medical Image Segmentation with Cycle-resemblance Attention [20.986884555902183]
Few-shot learning has gained increasing attention in the medical image semantic segmentation field.
In this paper, we propose a novel self-supervised few-shot medical image segmentation network.
We introduce a novel Cycle-Resemblance Attention (CRA) module to fully leverage the pixel-wise relation between query and support medical images.
arXiv Detail & Related papers (2022-12-07T21:55:26Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.