Development of CNN Architectures using Transfer Learning Methods for Medical Image Classification
- URL: http://arxiv.org/abs/2410.16711v1
- Date: Tue, 22 Oct 2024 05:37:51 GMT
- Title: Development of CNN Architectures using Transfer Learning Methods for Medical Image Classification
- Authors: Ganga Prasad Basyal, David Zeng, Bhaskar Pm Rimal,
- Abstract summary: This paper investigates the development of CNN architectures using transfer learning techniques in the field of medical image classification.
Our findings help make an informed decision while selecting the optimum and state-of-the-art CNN architectures.
- Score: 0.294944680995069
- License:
- Abstract: The application of deep learning-based architecture has seen a tremendous rise in recent years. For example, medical image classification using deep learning achieved breakthrough results. Convolutional Neural Networks (CNNs) are implemented predominantly in medical image classification and segmentation. On the other hand, transfer learning has emerged as a prominent supporting tool for enhancing the efficiency and accuracy of deep learning models. This paper investigates the development of CNN architectures using transfer learning techniques in the field of medical image classification using a timeline mapping model for key image classification challenges. Our findings help make an informed decision while selecting the optimum and state-of-the-art CNN architectures.
Related papers
- Disease Classification and Impact of Pretrained Deep Convolution Neural Networks on Diverse Medical Imaging Datasets across Imaging Modalities [0.0]
This paper investigates the intricacies of using pretrained deep convolutional neural networks with transfer learning across diverse medical imaging datasets.
It shows that the use of pretrained models as fixed feature extractors yields poor performance irrespective of the datasets.
It is also found that deeper and more complex architectures did not necessarily result in the best performance.
arXiv Detail & Related papers (2024-08-30T04:51:19Z) - Transformer-CNN Fused Architecture for Enhanced Skin Lesion Segmentation [0.0]
convolutional neural networks (CNNs) have greatly advanced medical image segmentation.
CNNs have been found to struggle with learning long-range dependencies and capturing global context.
We propose a hybrid architecture that combines the ability of transformers to capture global dependencies with the ability of CNNs to capture low-level spatial details.
arXiv Detail & Related papers (2024-01-10T18:36:14Z) - Deep Learning-based Bio-Medical Image Segmentation using UNet
Architecture and Transfer Learning [0.0]
We implement UNet architecture from scratch and evaluate its performance on biomedical image datasets.
We show that transferred learning model has better performance in image segmentation than UNet model that is implemented from scratch.
arXiv Detail & Related papers (2023-05-24T07:45:54Z) - Medical Image Analysis using Deep Relational Learning [1.8465474345655504]
We propose a context-aware fully convolutional network that effectively models implicit relation information between features to perform medical image segmentation.
We then propose a new hierarchical homography estimation network to achieve accurate medical image mosaicing by learning the explicit spatial relationship between adjacent frames.
arXiv Detail & Related papers (2023-03-28T16:10:12Z) - Development of an algorithm for medical image segmentation of bone
tissue in interaction with metallic implants [58.720142291102135]
This study develops an algorithm for calculating bone growth in contact with metallic implants.
Bone and implant tissue were manually segmented in the training data set.
In terms of network accuracy, the model reached around 98%.
arXiv Detail & Related papers (2022-04-22T08:17:20Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - Improving a neural network model by explanation-guided training for
glioma classification based on MRI data [0.0]
Interpretability methods have become a popular way to gain insight into the decision-making process of deep learning models.
We propose a method for explanation-guided training that uses a Layer-wise relevance propagation (LRP) technique.
We experimentally verified our method on a convolutional neural network (CNN) model for low-grade and high-grade glioma classification problems.
arXiv Detail & Related papers (2021-07-05T13:27:28Z) - A Multi-Stage Attentive Transfer Learning Framework for Improving
COVID-19 Diagnosis [49.3704402041314]
We propose a multi-stage attentive transfer learning framework for improving COVID-19 diagnosis.
Our proposed framework consists of three stages to train accurate diagnosis models through learning knowledge from multiple source tasks and data of different domains.
Importantly, we propose a novel self-supervised learning method to learn multi-scale representations for lung CT images.
arXiv Detail & Related papers (2021-01-14T01:39:19Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
Recent work has shown that the structure of deep convolutional neural networks can be used as a structured image prior.
We propose to search for neural architectures that capture stronger image priors.
We search for an improved network by leveraging an existing neural architecture search algorithm.
arXiv Detail & Related papers (2020-08-26T17:59:36Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
Retinopathy of Prematurity (ROP) is an eye disorder primarily affecting premature infants with lower weights.
It causes proliferation of vessels in the retina and could result in vision loss and, eventually, retinal detachment, leading to blindness.
In recent years, there has been a significant effort to automate the diagnosis using deep learning.
This paper builds upon the success of previous models and develops a novel architecture, which combines object segmentation and convolutional neural networks (CNN)
Our proposed system first trains an object segmentation model to identify the demarcation line at a pixel level and adds the resulting mask as an additional "color" channel in
arXiv Detail & Related papers (2020-04-03T14:07:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.