論文の概要: Quantitative Measurement of Cyber Resilience: Modeling and Experimentation
- arxiv url: http://arxiv.org/abs/2303.16307v3
- Date: Mon, 30 Dec 2024 04:02:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-31 15:59:32.564292
- Title: Quantitative Measurement of Cyber Resilience: Modeling and Experimentation
- Title(参考訳): サイバーレジリエンスの定量的測定:モデリングと実験
- Authors: Michael J. Weisman, Alexander Kott, Jason E. Ellis, Brian J. Murphy, Travis W. Parker, Sidney Smith, Joachim Vandekerckhove,
- Abstract要約: サイバーレジリエンス(サイバーレジリエンス)とは、システムがサイバー攻撃に対して抵抗し、回復する能力である。
本稿では、レジリエンス関連データを得るための実験方法と試験ベッドについて述べる。
- 参考スコア(独自算出の注目度): 36.19235874144082
- License:
- Abstract: Cyber resilience is the ability of a system to resist and recover from a cyber attack, thereby restoring the system's functionality. Effective design and development of a cyber resilient system requires experimental methods and tools for quantitative measuring of cyber resilience. This paper describes an experimental method and test bed for obtaining resilience-relevant data as a system (in our case -- a truck) traverses its route, in repeatable, systematic experiments. We model a truck equipped with an autonomous cyber-defense system and which also includes inherent physical resilience features. When attacked by malware, this ensemble of cyber-physical features (i.e., "bonware") strives to resist and recover from the performance degradation caused by the malware's attack. We propose parsimonious mathematical models to aid in quantifying systems' resilience to cyber attacks. Using the models, we identify quantitative characteristics obtainable from experimental data, and show that these characteristics can serve as useful quantitative measures of cyber resilience.
- Abstract(参考訳): サイバーレジリエンス(サイバーレジリエンス)とは、システムがサイバー攻撃に抵抗して回復し、システム機能を回復する能力である。
サイバーレジリエンスシステムの効果的な設計と開発には、サイバーレジリエンスを定量的に測定するための実験方法とツールが必要である。
本稿では,システムとしてレジリエンス関連データを取得するための実験方法とテストベッドについて述べる。
我々は、自律型サイバー防御システムを備えたトラックをモデル化し、固有の物理的レジリエンス機能を含む。
マルウェアに攻撃されると、このサイバー物理的特徴(すなわち「ボンウェア」)の集合は、マルウェアの攻撃によるパフォーマンス劣化に抵抗し、回復しようとする。
本稿では,サイバー攻撃に対するシステムのレジリエンスの定量化を支援するための擬似数学的モデルを提案する。
これらのモデルを用いて,実験データから得られる定量的特徴を同定し,サイバーレジリエンスの定量的指標として有用であることを示す。
関連論文リスト
- Disentangling the Causes of Plasticity Loss in Neural Networks [55.23250269007988]
可塑性の喪失は複数の独立したメカニズムに分解できることを示す。
種々の非定常学習タスクにおいて, 層正規化と重み劣化の組み合わせは, 可塑性維持に極めて有効であることを示す。
論文 参考訳(メタデータ) (2024-02-29T00:02:33Z) - Investigation of Multi-stage Attack and Defense Simulation for Data Synthesis [2.479074862022315]
本研究では,電力網における多段階サイバー攻撃の合成データを生成するモデルを提案する。
攻撃者のステップのシーケンスをモデル化するためにアタックツリーを使用し、ディフェンダーのアクションを組み込むゲーム理論のアプローチを使用する。
論文 参考訳(メタデータ) (2023-12-21T09:54:18Z) - A Variational Autoencoder Framework for Robust, Physics-Informed
Cyberattack Recognition in Industrial Cyber-Physical Systems [2.051548207330147]
我々は、産業制御システムに対する秘密攻撃と呼ばれるサイバー攻撃を検出し、診断し、ローカライズするために使用できるデータ駆動フレームワークを開発する。
このフレームワークは、可変オートエンコーダ(VAE)、リカレントニューラルネットワーク(RNN)、ディープニューラルネットワーク(DNN)を組み合わせたハイブリッド設計である。
論文 参考訳(メタデータ) (2023-10-10T19:07:53Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
調査は、センサーの故障やノイズなど、様々な摂動を扱うモデルの能力に焦点を当てている。
我々は,これらのモデルの一般化と伝達学習能力を,アウト・オブ・ディストリビューション(OOD)サンプルに公開することによって検証する。
論文 参考訳(メタデータ) (2023-06-13T12:43:59Z) - A robust statistical framework for cyber-vulnerability prioritisation under partial information in threat intelligence [0.0]
この研究は、サイバー脆弱性に関する不確実性の下で、定量的および質的な推論のための頑健な統計的枠組みを導入する。
我々は,既存の脆弱性の集合全体の部分的知識の下で,ばらつきのランクに適合する新しい精度尺度を同定する。
本稿では,サイバー脆弱性に関する部分的知識が,運用シナリオにおける脅威インテリジェンスと意思決定に与える影響について論じる。
論文 参考訳(メタデータ) (2023-02-16T15:05:43Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
近年の予測機械学習の進歩は、製造における様々なユースケースに応用されている。
ほとんどの研究は、それに関連する不確実性に対処することなく予測精度を最大化することに焦点を当てた。
本稿では,機械学習における不確実性の原因を特定し,不確実性下での機械学習システムの成功基準を確立する。
論文 参考訳(メタデータ) (2021-07-28T10:28:05Z) - CyberLearning: Effectiveness Analysis of Machine Learning Security
Modeling to Detect Cyber-Anomalies and Multi-Attacks [5.672898304129217]
サイバーラーニング(CyberLearning)は、相関機能選択による機械学習ベースのサイバーセキュリティモデリングである。
本稿では,異常検出のためのバイナリ分類モデルと,各種サイバー攻撃に対するマルチクラス分類モデルについて考察する。
次に、複数の隠蔽層を考慮した人工知能ニューラルネットワークベースのセキュリティモデルを提案する。
論文 参考訳(メタデータ) (2021-03-28T18:47:16Z) - Automated Adversary Emulation for Cyber-Physical Systems via
Reinforcement Learning [4.763175424744536]
我々は,サイバー物理システムに対する敵エミュレーションに対するドメイン認識の自動化手法を開発した。
我々は、マルコフ決定プロセス(MDP)モデルを定式化し、ハイブリッドアタックグラフ上で最適なアタックシーケンスを決定する。
モデルベースおよびモデルフリー強化学習(RL)法を用いて,離散連続型MDPをトラクタブルな方法で解く。
論文 参考訳(メタデータ) (2020-11-09T18:44:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。