論文の概要: Adaptive Attack Detection in Text Classification: Leveraging Space Exploration Features for Text Sentiment Classification
- arxiv url: http://arxiv.org/abs/2308.15663v1
- Date: Tue, 29 Aug 2023 23:02:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 07:12:46.259995
- Title: Adaptive Attack Detection in Text Classification: Leveraging Space Exploration Features for Text Sentiment Classification
- Title(参考訳): テキスト分類における適応的攻撃検出:テキスト知覚分類のための空間探索機能を活用する
- Authors: Atefeh Mahdavi, Neda Keivandarian, Marco Carvalho,
- Abstract要約: 敵のサンプル検出は、特に急速に進化する攻撃に直面して、適応的なサイバー防御において重要な役割を果たす。
本稿では,BERT(Bidirectional Representations from Transformers)のパワーを活用し,空間探索機能(Space Exploration Features)の概念を提案する。
- 参考スコア(独自算出の注目度): 44.99833362998488
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial example detection plays a vital role in adaptive cyber defense, especially in the face of rapidly evolving attacks. In adaptive cyber defense, the nature and characteristics of attacks continuously change, making it crucial to have robust mechanisms in place to detect and counter these threats effectively. By incorporating adversarial example detection techniques, adaptive cyber defense systems can enhance their ability to identify and mitigate attacks that attempt to exploit vulnerabilities in machine learning models or other systems. Adversarial examples are inputs that are crafted by applying intentional perturbations to natural inputs that result in incorrect classification. In this paper, we propose a novel approach that leverages the power of BERT (Bidirectional Encoder Representations from Transformers) and introduces the concept of Space Exploration Features. We utilize the feature vectors obtained from the BERT model's output to capture a new representation of feature space to improve the density estimation method.
- Abstract(参考訳): 敵のサンプル検出は、特に急速に進化する攻撃に直面して、適応的なサイバー防御において重要な役割を果たす。
適応型サイバー防御では、攻撃の性質と特性が継続的に変化し、これらの脅威を効果的に検出し、対処するための堅牢なメカニズムを持つことが重要である。
敵のサンプル検出技術を取り入れることで、適応型サイバー防御システムは、機械学習モデルやその他のシステムの脆弱性を悪用しようとする攻撃を識別し軽減する能力を高めることができる。
逆の例は、意図的な摂動を自然の入力に適用し、誤った分類をもたらす入力である。
本稿では,BERT(Bidirectional Encoder Representations from Transformers)のパワーを活用し,空間探索機能(Space Exploration Features)の概念を提案する。
BERTモデルの出力から得られた特徴ベクトルを用いて特徴空間の新たな表現を捕捉し、密度推定法を改善する。
関連論文リスト
- Undermining Image and Text Classification Algorithms Using Adversarial Attacks [0.0]
本研究は,各種機械学習モデルを訓練し,GANとSMOTEを用いてテキスト分類モデルへの攻撃を目的とした追加データポイントを生成することにより,そのギャップを解消する。
実験の結果,分類モデルの重大な脆弱性が明らかとなった。特に,攻撃後の最上位のテキスト分類モデルの精度が20%低下し,顔認識精度が30%低下した。
論文 参考訳(メタデータ) (2024-11-03T18:44:28Z) - Fortify the Guardian, Not the Treasure: Resilient Adversarial Detectors [0.0]
アダプティブアタックとは、攻撃者が防御を意識し、その戦略を適応させる攻撃である。
提案手法は, クリーンな精度を損なうことなく, 敵の訓練を活用して攻撃を検知する能力を強化する。
CIFAR-10とSVHNデータセットの実験的評価により,提案アルゴリズムは,適応的敵攻撃を正確に識別する検出器の能力を大幅に向上することを示した。
論文 参考訳(メタデータ) (2024-04-18T12:13:09Z) - Humanizing Machine-Generated Content: Evading AI-Text Detection through Adversarial Attack [24.954755569786396]
そこで本研究では,機械生成コンテンツの小さな摂動を回避して検出を回避すべく,より広いレベルの敵攻撃のためのフレームワークを提案する。
我々は、ホワイトボックスとブラックボックスの2つの攻撃設定を検討し、現在の検出モデルのロバスト性を高める可能性を評価するために、動的シナリオにおける逆学習を採用する。
実験の結果、現在の検出モデルは10秒で妥協でき、機械が生成したテキストを人間の書き起こしコンテンツとして誤分類する結果となった。
論文 参考訳(メタデータ) (2024-04-02T12:49:22Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuardは、障害タイプとゾーン分類のための最初のフレームワークであり、敵攻撃に耐性がある。
本稿では,ロバスト性を高めるために,低複雑性故障予測モデルとオンライン逆行訓練手法を提案する。
本モデルでは,耐故障予測ベンチマークの最先端を最大0.958の精度で上回っている。
論文 参考訳(メタデータ) (2024-03-26T08:51:23Z) - RobustSense: Defending Adversarial Attack for Secure Device-Free Human
Activity Recognition [37.387265457439476]
我々は、共通の敵攻撃を防御する新しい学習フレームワーク、RobustSenseを提案する。
本手法は,無線による人間行動認識と人物識別システムに有効である。
論文 参考訳(メタデータ) (2022-04-04T15:06:03Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
本研究では,フレーバータグ付けアルゴリズムの脆弱性について,敵攻撃による検証を行った。
シミュレーション攻撃の影響を緩和する対人訓練戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T19:57:19Z) - Adversarially Robust One-class Novelty Detection [83.1570537254877]
既存のノベルティ検出器は敵の例に感受性があることが示される。
本稿では, 新規性検知器の潜伏空間を制御し, 敵に対する堅牢性を向上する防衛戦略を提案する。
論文 参考訳(メタデータ) (2021-08-25T10:41:29Z) - Adaptive Feature Alignment for Adversarial Training [56.17654691470554]
CNNは通常、敵攻撃に対して脆弱であり、セキュリティに敏感なアプリケーションに脅威をもたらす。
任意の攻撃強度の特徴を生成するための適応的特徴アライメント(AFA)を提案する。
本手法は任意の攻撃強度の特徴を自動的に整列するように訓練されている。
論文 参考訳(メタデータ) (2021-05-31T17:01:05Z) - Selective and Features based Adversarial Example Detection [12.443388374869745]
Deep Neural Networks (DNN) を中継するセキュリティに敏感なアプリケーションは、Adversarial Examples (AE) を生成するために作られた小さな摂動に弱い。
本稿では,マルチタスク学習環境における選択的予測,モデルレイヤの出力処理,知識伝達概念を用いた教師なし検出機構を提案する。
実験の結果,提案手法は,ホワイトボックスシナリオにおけるテスト攻撃に対する最先端手法と同等の結果を得られ,ブラックボックスとグレーボックスシナリオの精度が向上した。
論文 参考訳(メタデータ) (2021-03-09T11:06:15Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
敵対的な例は、ディープニューラルネットワーク(DNN)ベースの視覚システムにおいて破滅的な誤りを引き起こす可能性がある。
本稿では,入力空間における自己教師型対向学習機構を提案する。
これは、反逆攻撃に対する強力な堅牢性を提供する。
論文 参考訳(メタデータ) (2020-06-08T20:42:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。