Real-time Controllable Denoising for Image and Video
- URL: http://arxiv.org/abs/2303.16425v1
- Date: Wed, 29 Mar 2023 03:10:28 GMT
- Title: Real-time Controllable Denoising for Image and Video
- Authors: Zhaoyang Zhang, Yitong Jiang, Wenqi Shao, Xiaogang Wang, Ping Luo,
Kaimo Lin, Jinwei Gu
- Abstract summary: Controllable image denoising aims to generate clean samples with human priors and balance sharpness and smoothness.
We introduce Real-time Controllable Denoising (RCD), the first deep image and video denoising pipeline.
RCD provides a fully controllable user interface to edit arbitrary denoising levels in real-time with only one-time network inference.
- Score: 44.68523669975698
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Controllable image denoising aims to generate clean samples with human
perceptual priors and balance sharpness and smoothness. In traditional
filter-based denoising methods, this can be easily achieved by adjusting the
filtering strength. However, for NN (Neural Network)-based models, adjusting
the final denoising strength requires performing network inference each time,
making it almost impossible for real-time user interaction. In this paper, we
introduce Real-time Controllable Denoising (RCD), the first deep image and
video denoising pipeline that provides a fully controllable user interface to
edit arbitrary denoising levels in real-time with only one-time network
inference. Unlike existing controllable denoising methods that require multiple
denoisers and training stages, RCD replaces the last output layer (which
usually outputs a single noise map) of an existing CNN-based model with a
lightweight module that outputs multiple noise maps. We propose a novel Noise
Decorrelation process to enforce the orthogonality of the noise feature maps,
allowing arbitrary noise level control through noise map interpolation. This
process is network-free and does not require network inference. Our experiments
show that RCD can enable real-time editable image and video denoising for
various existing heavy-weight models without sacrificing their original
performance.
Related papers
- Temporal As a Plugin: Unsupervised Video Denoising with Pre-Trained Image Denoisers [30.965705043127144]
In this paper, we propose a novel unsupervised video denoising framework, named Temporal As aTAP' (TAP)
By incorporating temporal modules, our method can harness temporal information across noisy frames, complementing its power of spatial denoising.
Compared to other unsupervised video denoising methods, our framework demonstrates superior performance on both sRGB and raw video denoising datasets.
arXiv Detail & Related papers (2024-09-17T15:05:33Z) - Self-Calibrated Variance-Stabilizing Transformations for Real-World Image Denoising [19.08732222562782]
Supervised deep learning has become the method of choice for image denoising.
We show that, contrary to popular belief, denoising networks specialized in the removal of Gaussian noise can be efficiently leveraged in favor of real-world image denoising.
arXiv Detail & Related papers (2024-07-24T16:23:46Z) - Enhancing convolutional neural network generalizability via low-rank weight approximation [6.763245393373041]
Sufficient denoising is often an important first step for image processing.
Deep neural networks (DNNs) have been widely used for image denoising.
We introduce a new self-supervised framework for image denoising based on the Tucker low-rank tensor approximation.
arXiv Detail & Related papers (2022-09-26T14:11:05Z) - Dynamic Slimmable Denoising Network [64.77565006158895]
Dynamic slimmable denoising network (DDSNet) is a general method to achieve good denoising quality with less computational complexity.
OurNet is empowered with the ability of dynamic inference by a dynamic gate.
Our experiments demonstrate our-Net consistently outperforms the state-of-the-art individually trained static denoising networks.
arXiv Detail & Related papers (2021-10-17T22:45:33Z) - Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images [98.82804259905478]
We present Neighbor2Neighbor to train an effective image denoising model with only noisy images.
In detail, input and target used to train a network are images sub-sampled from the same noisy image.
A denoising network is trained on sub-sampled training pairs generated in the first stage, with a proposed regularizer as additional loss for better performance.
arXiv Detail & Related papers (2021-01-08T02:03:25Z) - Adaptive noise imitation for image denoising [58.21456707617451]
We develop a new textbfadaptive noise imitation (ADANI) algorithm that can synthesize noisy data from naturally noisy images.
To produce realistic noise, a noise generator takes unpaired noisy/clean images as input, where the noisy image is a guide for noise generation.
Coupling the noisy data output from ADANI with the corresponding ground-truth, a denoising CNN is then trained in a fully-supervised manner.
arXiv Detail & Related papers (2020-11-30T02:49:36Z) - Learning Model-Blind Temporal Denoisers without Ground Truths [46.778450578529814]
Denoisers trained with synthetic data often fail to cope with the diversity of unknown noises.
Previous image-based method leads to noise overfitting if directly applied to video denoisers.
We propose a general framework for video denoising networks that successfully addresses these challenges.
arXiv Detail & Related papers (2020-07-07T07:19:48Z) - Flexible Image Denoising with Multi-layer Conditional Feature Modulation [56.018132592622706]
We present a novel flexible image enoising network (CFMNet) by equipping an U-Net backbone with conditional feature modulation (CFM) modules.
In comparison to channel-wise shifting only in the first layer, CFMNet can make better use of noise level information by deploying multiple layers of CFM.
Our CFMNet is effective in exploiting noise level information for flexible non-blind denoising, and performs favorably against the existing deep image denoising methods in terms of both quantitative metrics and visual quality.
arXiv Detail & Related papers (2020-06-24T06:00:00Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
Blind image denoising is an important yet very challenging problem in computer vision.
We propose a new variational inference method, which integrates both noise estimation and image denoising.
arXiv Detail & Related papers (2019-08-29T15:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.