Reference-less Analysis of Context Specificity in Translation with
Personalised Language Models
- URL: http://arxiv.org/abs/2303.16618v3
- Date: Tue, 5 Mar 2024 08:51:30 GMT
- Title: Reference-less Analysis of Context Specificity in Translation with
Personalised Language Models
- Authors: Sebastian Vincent, Alice Dowek, Rowanne Sumner, Charlotte Blundell,
Emily Preston, Chris Bayliss, Chris Oakley, Carolina Scarton
- Abstract summary: This work investigates what extent rich character and film annotations can be leveraged to personalise language models (LMs)
We build LMs which leverage rich contextual information to reduce perplexity by up to 6.5% compared to a non-contextual model.
Our results suggest that the degree to which professional translations in our domain are context-specific can be preserved to a better extent by a contextual machine translation model.
- Score: 3.527589066359829
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Sensitising language models (LMs) to external context helps them to more
effectively capture the speaking patterns of individuals with specific
characteristics or in particular environments. This work investigates to what
extent rich character and film annotations can be leveraged to personalise LMs
in a scalable manner. We then explore the use of such models in evaluating
context specificity in machine translation. We build LMs which leverage rich
contextual information to reduce perplexity by up to 6.5% compared to a
non-contextual model, and generalise well to a scenario with no
speaker-specific data, relying on combinations of demographic characteristics
expressed via metadata. Our findings are consistent across two corpora, one of
which (Cornell-rich) is also a contribution of this paper. We then use our
personalised LMs to measure the co-occurrence of extra-textual context and
translation hypotheses in a machine translation setting. Our results suggest
that the degree to which professional translations in our domain are
context-specific can be preserved to a better extent by a contextual machine
translation model than a non-contextual model, which is also reflected in the
contextual model's superior reference-based scores.
Related papers
- Context is Key: A Benchmark for Forecasting with Essential Textual Information [87.3175915185287]
"Context is Key" (CiK) is a time series forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context.
We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters.
Our experiments highlight the importance of incorporating contextual information, demonstrate surprising performance when using LLM-based forecasting models, and also reveal some of their critical shortcomings.
arXiv Detail & Related papers (2024-10-24T17:56:08Z) - Improving Context-Aware Preference Modeling for Language Models [62.32080105403915]
We consider the two-step preference modeling procedure that first resolves the under-specification by selecting a context, and then evaluates preference with respect to the chosen context.
We contribute context-conditioned preference datasets and experiments that investigate the ability of language models to evaluate context-specific preference.
arXiv Detail & Related papers (2024-07-20T16:05:17Z) - Exploring the Correlation between Human and Machine Evaluation of Simultaneous Speech Translation [0.9576327614980397]
This study aims to assess the reliability of automatic metrics in evaluating simultaneous interpretations by analyzing their correlation with human evaluations.
As a benchmark we use human assessments performed by language experts, and evaluate how well sentence embeddings and Large Language Models correlate with them.
The results suggest GPT models, particularly GPT-3.5 with direct prompting, demonstrate the strongest correlation with human judgment in terms of semantic similarity between source and target texts.
arXiv Detail & Related papers (2024-06-14T14:47:19Z) - Context-Aware Machine Translation with Source Coreference Explanation [26.336947440529713]
We propose a model that explains the decisions made for translation by predicting coreference features in the input.
We evaluate our method in the WMT document-level translation task of English-German dataset, the English-Russian dataset, and the multilingual TED talk dataset.
arXiv Detail & Related papers (2024-04-30T12:41:00Z) - Exploring Precision and Recall to assess the quality and diversity of LLMs [82.21278402856079]
We introduce a novel evaluation framework for Large Language Models (LLMs) such as textscLlama-2 and textscMistral.
This approach allows for a nuanced assessment of the quality and diversity of generated text without the need for aligned corpora.
arXiv Detail & Related papers (2024-02-16T13:53:26Z) - Can Large Language Models Understand Context? [17.196362853457412]
This paper introduces a context understanding benchmark by adapting existing datasets to suit the evaluation of generative models.
Experimental results indicate that pre-trained dense models struggle with understanding more nuanced contextual features when compared to state-of-the-art fine-tuned models.
As LLM compression holds growing significance in both research and real-world applications, we assess the context understanding of quantized models under in-context-learning settings.
arXiv Detail & Related papers (2024-02-01T18:55:29Z) - Lost in the Source Language: How Large Language Models Evaluate the Quality of Machine Translation [64.5862977630713]
This study investigates how Large Language Models (LLMs) leverage source and reference data in machine translation evaluation task.
We find that reference information significantly enhances the evaluation accuracy, while surprisingly, source information sometimes is counterproductive.
arXiv Detail & Related papers (2024-01-12T13:23:21Z) - Quantifying the Plausibility of Context Reliance in Neural Machine
Translation [25.29330352252055]
We introduce Plausibility Evaluation of Context Reliance (PECoRe)
PECoRe is an end-to-end interpretability framework designed to quantify context usage in language models' generations.
We use pecore to quantify the plausibility of context-aware machine translation models.
arXiv Detail & Related papers (2023-10-02T13:26:43Z) - MTCue: Learning Zero-Shot Control of Extra-Textual Attributes by
Leveraging Unstructured Context in Neural Machine Translation [3.703767478524629]
This work introduces MTCue, a novel neural machine translation (NMT) framework that interprets all context (including discrete variables) as text.
MTCue learns an abstract representation of context, enabling transferability across different data settings.
MTCue significantly outperforms a "tagging" baseline at translating English text.
arXiv Detail & Related papers (2023-05-25T10:06:08Z) - When Does Translation Require Context? A Data-driven, Multilingual
Exploration [71.43817945875433]
proper handling of discourse significantly contributes to the quality of machine translation (MT)
Recent works in context-aware MT attempt to target a small set of discourse phenomena during evaluation.
We develop the Multilingual Discourse-Aware benchmark, a series of taggers that identify and evaluate model performance on discourse phenomena.
arXiv Detail & Related papers (2021-09-15T17:29:30Z) - Towards Making the Most of Context in Neural Machine Translation [112.9845226123306]
We argue that previous research did not make a clear use of the global context.
We propose a new document-level NMT framework that deliberately models the local context of each sentence.
arXiv Detail & Related papers (2020-02-19T03:30:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.