論文の概要: Explainable AI Methods for Multi-Omics Analysis: A Survey
- arxiv url: http://arxiv.org/abs/2410.11910v1
- Date: Tue, 15 Oct 2024 05:01:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:43:17.052983
- Title: Explainable AI Methods for Multi-Omics Analysis: A Survey
- Title(参考訳): マルチオミクス分析のための説明可能なAI手法:サーベイ
- Authors: Ahmad Hussein, Mukesh Prasad, Ali Braytee,
- Abstract要約: マルチオミクス(multi-omics)とは、複数の「オム」から派生したデータの積分解析である。
深層学習の手法は、マルチオミクスデータの統合や、分子間相互作用の洞察、複雑な疾患の研究の強化にますます活用されている。
これらのモデルは、多くの相互接続層と非線形関係を持ち、しばしばブラックボックスとして機能し、意思決定プロセスにおける透明性を欠いている。
このレビューでは、マルチオミクス研究において、xAIが深層学習モデルの解釈可能性を改善する方法について検討し、臨床医に明確な洞察を与える可能性を強調した。
- 参考スコア(独自算出の注目度): 3.885941688264509
- License:
- Abstract: Advancements in high-throughput technologies have led to a shift from traditional hypothesis-driven methodologies to data-driven approaches. Multi-omics refers to the integrative analysis of data derived from multiple 'omes', such as genomics, proteomics, transcriptomics, metabolomics, and microbiomics. This approach enables a comprehensive understanding of biological systems by capturing different layers of biological information. Deep learning methods are increasingly utilized to integrate multi-omics data, offering insights into molecular interactions and enhancing research into complex diseases. However, these models, with their numerous interconnected layers and nonlinear relationships, often function as black boxes, lacking transparency in decision-making processes. To overcome this challenge, explainable artificial intelligence (xAI) methods are crucial for creating transparent models that allow clinicians to interpret and work with complex data more effectively. This review explores how xAI can improve the interpretability of deep learning models in multi-omics research, highlighting its potential to provide clinicians with clear insights, thereby facilitating the effective application of such models in clinical settings.
- Abstract(参考訳): 高スループット技術の進歩は、従来の仮説駆動の方法論からデータ駆動のアプローチへと変化した。
マルチオミクス(英: multi-omics)とは、ゲノム学、プロテオミクス、転写学、メタボロミクス、微生物学など、複数の「オム」から派生したデータの積分解析である。
このアプローチは、生物学的情報の異なるレイヤをキャプチャすることで、生物学的システムの包括的理解を可能にする。
深層学習の手法は、マルチオミクスデータの統合や、分子間相互作用の洞察、複雑な疾患の研究の強化にますます活用されている。
しかしながら、これらのモデルは、多くの相互接続層と非線形関係を持ち、しばしばブラックボックスとして機能し、意思決定プロセスにおける透明性を欠いている。
この課題を克服するために、説明可能な人工知能(xAI)手法は、臨床医が複雑なデータをより効果的に解釈し、処理できるように透明なモデルを作成するために不可欠である。
本総説では,マルチオミクス研究における深層学習モデルの解釈可能性の向上について考察し,臨床医に明確な洞察を与える可能性を強調した。
関連論文リスト
- Large Language Models in Drug Discovery and Development: From Disease Mechanisms to Clinical Trials [49.19897427783105]
大規模言語モデル(LLM)の創薬・開発分野への統合は、重要なパラダイムシフトである。
これらの先進的な計算モデルが、ターゲット・ディスリーズ・リンクを明らかにし、複雑なバイオメディカルデータを解釈し、薬物分子設計を強化し、薬物の有効性と安全性を予測し、臨床治験プロセスを促進する方法について検討する。
論文 参考訳(メタデータ) (2024-09-06T02:03:38Z) - A Systematic Review of Intermediate Fusion in Multimodal Deep Learning for Biomedical Applications [0.7831774233149619]
本研究は,生物医学的応用における現在の中間核融合法の解析と形式化を目的としている。
バイオメディカルドメインを超えて,これらの手法の理解と応用を高めるための構造的表記法を導入する。
我々の発見は、より高度で洞察に富んだマルチモーダルモデルの開発において、研究者、医療専門家、そしてより広範なディープラーニングコミュニティを支援することを目的としています。
論文 参考訳(メタデータ) (2024-08-02T11:48:04Z) - Simplicity within biological complexity [0.0]
文献を調査し、マルチスケール分子ネットワークデータの埋め込みのための包括的フレームワークの開発について論じる。
ネットワーク埋め込み手法はノードを低次元空間の点にマッピングすることにより、学習空間の近接性はネットワークのトポロジ-関数関係を反映する。
本稿では,モデルから効率的かつスケーラブルなソフトウェア実装に至るまで,マルチオミックネットワークデータのための汎用的な包括的埋め込みフレームワークを開発することを提案する。
論文 参考訳(メタデータ) (2024-05-15T13:32:45Z) - Causal machine learning for single-cell genomics [94.28105176231739]
単細胞ゲノミクスへの機械学習技術の応用とその課題について論じる。
まず, 単一細胞生物学における現在の因果的アプローチの基盤となるモデルについて述べる。
次に、単一セルデータへの因果的アプローチの適用におけるオープンな問題を特定する。
論文 参考訳(メタデータ) (2023-10-23T13:35:24Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
本稿では,変換器と生成対向ネットワークを用いた不完全なマルチモーダルデータ統合手法を提案する。
アルツハイマー病神経画像イニシアチブコホートを用いたマルチモーダルイメージングによる認知変性と疾患予後の予測に本手法を適用した。
論文 参考訳(メタデータ) (2023-05-25T16:29:16Z) - Machine Learning for Uncovering Biological Insights in Spatial
Transcriptomics Data [0.0]
マルチセルシステムの開発とホメオスタシスは、空間分子パターンの形成と維持に精巧な制御を必要とする。
空間転写学(ST)の進歩は、革新的な機械学習(ML)ツールの急速な開発につながっている。
MLが対応できる主要なST分析目標と現在の分析トレンドを要約する。
論文 参考訳(メタデータ) (2023-03-29T14:22:08Z) - Interpretability from a new lens: Integrating Stratification and Domain
knowledge for Biomedical Applications [0.0]
本稿では, バイオメディカル問題データセットの k-fold cross-validation (CV) への階層化のための新しい計算手法を提案する。
このアプローチはモデルの安定性を改善し、信頼を確立し、トレーニングされたIMLモデルによって生成された結果の説明を提供する。
論文 参考訳(メタデータ) (2023-03-15T12:02:02Z) - Multimodal Data Integration for Oncology in the Era of Deep Neural Networks: A Review [0.0]
多様なデータ型を統合することで、がんの診断と治療の精度と信頼性が向上する。
ディープニューラルネットワークは、洗練されたマルチモーダルデータ融合アプローチの開発を促進する。
グラフニューラルネットワーク(GNN)やトランスフォーマーといった最近のディープラーニングフレームワークは、マルチモーダル学習において顕著な成功を収めている。
論文 参考訳(メタデータ) (2023-03-11T17:52:03Z) - Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement [75.00655434905417]
説明可能な人工知能(XAI)は、高度に複雑な機械学習(ML)モデルに透明性をもたらす新たな研究分野である。
本稿では,機械学習モデルの諸特性を改善するために,XAIを実用的に応用する手法を概観する。
実験では,モデル一般化能力や推論などの特性を改善する上で,説明がどのように役立つのかを,おもちゃと現実的な設定で実証的に示す。
論文 参考訳(メタデータ) (2022-03-15T15:44:28Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
我々は,マルチモーダルモデルの解釈における最先端化に注力する。
提案手法であるDIMEは,マルチモーダルモデルの高精度かつきめ細かな解析を可能にする。
論文 参考訳(メタデータ) (2022-03-03T20:52:47Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。