論文の概要: Multi-View Spectral Clustering Tailored Tensor Low-Rank Representation
- arxiv url: http://arxiv.org/abs/2004.14705v2
- Date: Sat, 1 Aug 2020 13:35:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-08 02:54:16.984674
- Title: Multi-View Spectral Clustering Tailored Tensor Low-Rank Representation
- Title(参考訳): マルチビュースペクトルクラスタリングによるテンソル低ランク表現
- Authors: Yuheng Jia, Hui Liu, Junhui Hou, Sam Kwong, Qingfu Zhang
- Abstract要約: 本稿では,テンソル低ランクモデルに基づくマルチビュースペクトルクラスタリング(MVSC)の問題について検討する。
MVSCに適合する新しい構造テンソル低ランクノルムを設計する。
提案手法は最先端の手法よりもかなり優れていることを示す。
- 参考スコア(独自算出の注目度): 105.33409035876691
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper explores the problem of multi-view spectral clustering (MVSC)
based on tensor low-rank modeling. Unlike the existing methods that all adopt
an off-the-shelf tensor low-rank norm without considering the special
characteristics of the tensor in MVSC, we design a novel structured tensor
low-rank norm tailored to MVSC. Specifically, we explicitly impose a symmetric
low-rank constraint and a structured sparse low-rank constraint on the frontal
and horizontal slices of the tensor to characterize the intra-view and
inter-view relationships, respectively. Moreover, the two constraints could be
jointly optimized to achieve mutual refinement. On the basis of the novel
tensor low-rank norm, we formulate MVSC as a convex low-rank tensor recovery
problem, which is then efficiently solved with an augmented Lagrange multiplier
based method iteratively. Extensive experimental results on five benchmark
datasets show that the proposed method outperforms state-of-the-art methods to
a significant extent. Impressively, our method is able to produce perfect
clustering. In addition, the parameters of our method can be easily tuned, and
the proposed model is robust to different datasets, demonstrating its potential
in practice.
- Abstract(参考訳): 本稿では,テンソル低ランクモデルに基づくマルチビュースペクトルクラスタリング(MVSC)の問題について検討する。
MVSCのテンソルの特殊特性を考慮せずに、既成のテンソル低ランクノルムを採用する既存の方法とは異なり、MVSCに合わせた構造付きテンソル低ランクノルムを設計する。
具体的には、テンソルの前面スライスと水平スライスに対称な低ランク制約と構造的な低ランク制約を明示的に課し、ビュー内関係とビュー間関係を特徴付ける。
さらに、この2つの制約は相互改善を達成するために共同で最適化できる。
新たなテンソル低ランクノルムに基づいて, MVSCを凸低ランクテンソル回復問題として定式化し, 拡張ラグランジュ乗算法を反復的に解いた。
5つのベンチマークデータセットの広範な実験結果から,提案手法が最先端手法をかなり上回っていることがわかった。
驚くべきことに、この手法は完璧なクラスタリングを実現できる。
さらに,提案手法のパラメータの調整も容易であり,提案手法は異なるデータセットに対して頑健であり,実際にその可能性を示す。
関連論文リスト
- Low-Rank Tensors for Multi-Dimensional Markov Models [33.35376484951434]
多次元状態空間上の遷移確率を表す低ランクテンソルを提案する。
提案したモデルでは,行列ベースのアプローチよりも少ないパラメータで類似表現が得られる。
論文 参考訳(メタデータ) (2024-11-04T14:06:49Z) - Irregular Tensor Low-Rank Representation for Hyperspectral Image Representation [71.69331824668954]
低ランクテンソル表現はスペクトル変動を緩和するための重要なアプローチである。
従来の低ランク表現法は、通常のデータキューブにのみ適用できる。
本稿では,不規則な3次元立方体を効率的にモデル化できる新しい不規則な低ランク表現法を提案する。
論文 参考訳(メタデータ) (2024-10-24T02:56:22Z) - Data-freeWeight Compress and Denoise for Large Language Models [101.53420111286952]
パラメータ行列を圧縮する手法として,データフリーなジョイントランクk近似を提案する。
キャリブレーションデータなしで、元の性能の93.43%を維持しながら80%のパラメータのモデルプルーニングを実現する。
論文 参考訳(メタデータ) (2024-02-26T05:51:47Z) - Hyper-Laplacian Regularized Concept Factorization in Low-rank Tensor
Space for Multi-view Clustering [0.0]
マルチビュークラスタリングのための低ランクテンソル空間における超ラプラシア正規化概念分解(HLRCF)を提案する。
具体的には、各ビューの潜在クラスタ単位の表現を探索するために、概念因子化を採用します。
異なるテンソル特異値が構造情報と不等値とを関連付けることを考慮し、自己重み付きテンソルSchatten p-ノルムを開発する。
論文 参考訳(メタデータ) (2023-04-22T15:46:58Z) - Multi-View Clustering via Semi-non-negative Tensor Factorization [120.87318230985653]
半負のテンソル因子分解(Semi-NTF)に基づく新しいマルチビュークラスタリングを開発する。
本モデルは、ビュー間の関係を直接考慮し、ビュー間の補完情報を利用する。
さらに,提案手法の最適化アルゴリズムを提案し,そのアルゴリズムが常に定常KKT点に収束することを数学的に証明する。
論文 参考訳(メタデータ) (2023-03-29T14:54:19Z) - Semi-Supervised Subspace Clustering via Tensor Low-Rank Representation [64.49871502193477]
本稿では,初期監視情報を同時に拡張し,識別親和性行列を構築することのできる,新しい半教師付きサブスペースクラスタリング手法を提案する。
6つの一般的なベンチマークデータセットの総合的な実験結果から,本手法が最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-05-21T01:47:17Z) - Spectral Tensor Train Parameterization of Deep Learning Layers [136.4761580842396]
重み行列の低ランクパラメータ化をDeep Learningコンテキストに埋め込まれたスペクトル特性を用いて検討する。
分類設定におけるニューラルネットワーク圧縮の効果と,生成的対角トレーニング設定における圧縮および安定性トレーニングの改善について述べる。
論文 参考訳(メタデータ) (2021-03-07T00:15:44Z) - Multi-mode Core Tensor Factorization based Low-Rankness and Its
Applications to Tensor Completion [0.0]
低ランクテンソル補完はコンピュータや機械学習で広く使われている。
本稿では,マルチモーダルテンソル化アルゴリズム(MCTF)と低ランク度尺度を併用し,より優れた非スペクトル緩和形式を提案する。
論文 参考訳(メタデータ) (2020-12-03T13:57:00Z) - Enhanced nonconvex low-rank approximation of tensor multi-modes for
tensor completion [1.3406858660972554]
我々は、新しい低ランク近似テンソルマルチモード(LRATM)を提案する。
ブロックバウンド法に基づくアルゴリズムは,提案手法を効率的に解くために設計されている。
3種類の公開多次元データセットの数値計算結果から,本アルゴリズムは様々な低ランクテンソルを復元可能であることが示された。
論文 参考訳(メタデータ) (2020-05-28T08:53:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。