論文の概要: Application of probabilistic modeling and automated machine learning
framework for high-dimensional stress field
- arxiv url: http://arxiv.org/abs/2303.16869v2
- Date: Tue, 11 Apr 2023 19:50:48 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-13 17:31:42.336710
- Title: Application of probabilistic modeling and automated machine learning
framework for high-dimensional stress field
- Title(参考訳): 高次元応力場に対する確率モデリングと自動機械学習フレームワークの適用
- Authors: Lele Luan, Nesar Ramachandra, Sandipp Krishnan Ravi, Anindya Bhaduri,
Piyush Pandita, Prasanna Balaprakash, Mihai Anitescu, Changjie Sun, Liping
Wang
- Abstract要約: 本稿では,入力のような高次元画像を高次元あるいはその重要な統計量の出力にマッピングするエンド・ツー・エンドのアプローチを提案する。
a) 高次元空間から低次元空間への入力と出力を減少または低次元空間へ、b)低次元空間における入力と出力の関係をモデル化し、c) マスクとしてドメイン固有の物理的制約を組み込むことを可能にした。
- 参考スコア(独自算出の注目度): 1.073039474000799
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern computational methods, involving highly sophisticated mathematical
formulations, enable several tasks like modeling complex physical phenomenon,
predicting key properties and design optimization. The higher fidelity in these
computer models makes it computationally intensive to query them hundreds of
times for optimization and one usually relies on a simplified model albeit at
the cost of losing predictive accuracy and precision. Towards this, data-driven
surrogate modeling methods have shown a lot of promise in emulating the
behavior of the expensive computer models. However, a major bottleneck in such
methods is the inability to deal with high input dimensionality and the need
for relatively large datasets. With such problems, the input and output
quantity of interest are tensors of high dimensionality. Commonly used
surrogate modeling methods for such problems, suffer from requirements like
high number of computational evaluations that precludes one from performing
other numerical tasks like uncertainty quantification and statistical analysis.
In this work, we propose an end-to-end approach that maps a high-dimensional
image like input to an output of high dimensionality or its key statistics. Our
approach uses two main framework that perform three steps: a) reduce the input
and output from a high-dimensional space to a reduced or low-dimensional space,
b) model the input-output relationship in the low-dimensional space, and c)
enable the incorporation of domain-specific physical constraints as masks. In
order to accomplish the task of reducing input dimensionality we leverage
principal component analysis, that is coupled with two surrogate modeling
methods namely: a) Bayesian hybrid modeling, and b) DeepHyper's deep neural
networks. We demonstrate the applicability of the approach on a problem of a
linear elastic stress field data.
- Abstract(参考訳): 高度な数学的定式化を含む現代の計算手法は、複雑な物理現象のモデリング、鍵となる特性の予測、設計最適化など、いくつかのタスクを可能にする。
これらのコンピュータモデルの忠実度が高ければ高いほど、最適化のために数百回も問合せしやすくなり、予測精度と精度を損なうため、通常は単純化されたモデルに頼っている。
これに対して、データ駆動サーロゲートモデリング手法は、高価なコンピュータモデルの振る舞いをエミュレートする多くの可能性を示している。
しかし、そのような手法の大きなボトルネックは、高い入力次元を扱うことができないことと比較的大きなデータセットの必要性である。
このような問題に対して、興味の入出力量は高次元のテンソルである。
このような問題に対してよく用いられる代理モデリング手法は、不確実性定量化や統計解析のような他の数値的なタスクの実行を阻害する大量の計算評価のような要求に悩まされる。
本研究では,入力のような高次元画像を高次元あるいはその重要な統計量の出力にマッピングするエンドツーエンドアプローチを提案する。
私たちのアプローチは、3つのステップを実行する2つの主要なフレームワークを使用します。
a) 高次元空間から低次元空間へ入力と出力を減少させる
b)低次元空間における入出力関係をモデル化し、
c) マスクとしてドメイン固有の物理的制約を組み込むことができる。
入力次元を減少させるタスクを達成するために、主成分分析を利用する。
a)ベイズハイブリッドモデリング、及び
b) DeepHyperのディープニューラルネットワーク。
線形弾性応力場データの問題に対するアプローチの適用性を示す。
関連論文リスト
- Sensitivity analysis using the Metamodel of Optimal Prognosis [0.0]
仮想プロトタイピングプロセス内の実例では、物理モデルの複雑さを減らすことは必ずしも不可能である。
本稿では,実際の問題に対して最適なメタモデルを選択するための自動アプローチを提案する。
論文 参考訳(メタデータ) (2024-08-07T07:09:06Z) - Multi-GPU Approach for Training of Graph ML Models on large CFD Meshes [0.0]
メッシュベースの数値解法は多くのデザインツールチェーンにおいて重要な部分である。
機械学習に基づく代理モデルは近似解を予測するのに速いが、精度に欠けることが多い。
本稿では、グラフベース機械学習の領域から産業関連メッシュサイズまで、最先端のサロゲートモデルをスケールする。
論文 参考訳(メタデータ) (2023-07-25T15:49:25Z) - Learning Controllable Adaptive Simulation for Multi-resolution Physics [86.8993558124143]
完全深層学習に基づくサロゲートモデルとして,LAMP(Learning Controllable Adaptive Simulation for Multi- resolution Physics)を導入した。
LAMPは、前方進化を学習するためのグラフニューラルネットワーク(GNN)と、空間的洗練と粗大化のポリシーを学ぶためのGNNベースのアクター批判で構成されている。
我々は,LAMPが最先端のディープラーニングサロゲートモデルより優れており,長期予測誤差を改善するために,適応的なトレードオフ計算が可能であることを実証した。
論文 参考訳(メタデータ) (2023-05-01T23:20:27Z) - Low-dimensional Data-based Surrogate Model of a Continuum-mechanical
Musculoskeletal System Based on Non-intrusive Model Order Reduction [0.0]
データ駆動型モデルオーダーリダクションを用いた代理モデルのような従来の手法は、高忠実度モデルをより広く利用するために用いられる。
ヒト上腕部の複素有限要素モデルに対する代理モデル手法の利点を実証する。
論文 参考訳(メタデータ) (2023-02-13T17:14:34Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
我々は,内在性雑音障害を緩和し,AIによって強化された数値解法を,データサイズを小さくする訓練について検討する。
まず,教師付き学習における雑音を制御するための自己認識機構の能力を解析し,さらに微分方程式の数値解に付加的な自己認識機構を導入し,簡便かつ有効な数値解法であるAttrを提案する。
論文 参考訳(メタデータ) (2023-02-05T01:39:21Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
多要素代理モデリングは、異なるシミュレーション出力を融合させることで計算コストを削減する。
本稿では,多階層型階層型ニューラルネットワーク(MF-HNP)を提案する。
疫学および気候モデリングタスクにおけるMF-HNPの評価を行い、精度と不確実性評価の観点から競合性能を達成した。
論文 参考訳(メタデータ) (2022-06-10T04:54:13Z) - Data-driven Uncertainty Quantification in Computational Human Head
Models [0.6745502291821954]
現代の生物モデルシミュレーションは、非常に高い計算コストと高次元の入力と出力に関連付けられている。
本研究では、計算ヘッドモデルの不確実性定量化(UQ)のために、2段階のデータ駆動型学習ベースフレームワークを提案する。
代理モデルが計算モデルの高精度な近似を提供するとともに,計算コストを大幅に削減することを示した。
論文 参考訳(メタデータ) (2021-10-29T05:42:31Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
計算設計の問題は、合成生物学からコンピュータアーキテクチャまで、様々な場面で発生している。
本研究では,分布外入力に対する接地的目標の実際の値を低くする目的関数のモデルを学習する手法を提案する。
COMは、様々なMBO問題に対して、既存のメソッドの実装と性能の面では単純である。
論文 参考訳(メタデータ) (2021-07-14T17:55:28Z) - Model-data-driven constitutive responses: application to a multiscale
computational framework [0.0]
古典法則(モデルベース)、データ駆動補正コンポーネント、計算的マルチスケールアプローチを組み合わせたハイブリッド方法論が提示される。
非線形数値均質化法により得られた低スケールのデータを用いてモデルベース材料表現を局所的に改善する。
提案手法では,モデルとデータの両方が基本的な役割を担い,物理に基づく応答と機械学習のブラックボックスの相乗的統合を実現する。
論文 参考訳(メタデータ) (2021-04-06T16:34:46Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
データ駆動最適化の問題を検討し、一定の点セットでクエリのみを与えられた関数を最大化する必要がある。
この問題は、関数評価が複雑で高価なプロセスである多くの領域に現れる。
我々は,提案手法を高容量ニューラルネットワークモデルに拡張可能なトラクタブル近似を提案する。
論文 参考訳(メタデータ) (2021-02-16T06:04:27Z) - Secrets of 3D Implicit Object Shape Reconstruction in the Wild [92.5554695397653]
コンピュータビジョン、ロボティクス、グラフィックスの様々な用途において、高精細な3Dオブジェクトをスパースから再構築することは重要です。
最近の神経暗黙的モデリング法は、合成データセットまたは高密度データセットで有望な結果を示す。
しかし、粗末でノイズの多い実世界のデータではパフォーマンスが悪い。
本論文では, 一般的な神経暗黙モデルの性能低下の根本原因を解析する。
論文 参考訳(メタデータ) (2021-01-18T03:24:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。