論文の概要: Meta-Learning Parameterized First-Order Optimizers using Differentiable
Convex Optimization
- arxiv url: http://arxiv.org/abs/2303.16952v1
- Date: Wed, 29 Mar 2023 18:17:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-31 15:32:21.707771
- Title: Meta-Learning Parameterized First-Order Optimizers using Differentiable
Convex Optimization
- Title(参考訳): 微分可能凸最適化を用いたメタラーニングパラメータ化一階最適化
- Authors: Tanmay Gautam, Samuel Pfrommer, Somayeh Sojoudi
- Abstract要約: 本稿では、内部ループ最適化ステップにおいて、微分凸最適化(DCO)を解くメタラーニングフレームワークを提案する。
線形最小二乗問題の族を一段階最適化できることを示すことによって、このアプローチの理論的魅力を説明する。
- 参考スコア(独自算出の注目度): 13.043909705693249
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conventional optimization methods in machine learning and controls rely
heavily on first-order update rules. Selecting the right method and
hyperparameters for a particular task often involves trial-and-error or
practitioner intuition, motivating the field of meta-learning. We generalize a
broad family of preexisting update rules by proposing a meta-learning framework
in which the inner loop optimization step involves solving a differentiable
convex optimization (DCO). We illustrate the theoretical appeal of this
approach by showing that it enables one-step optimization of a family of linear
least squares problems, given that the meta-learner has sufficient exposure to
similar tasks. Various instantiations of the DCO update rule are compared to
conventional optimizers on a range of illustrative experimental settings.
- Abstract(参考訳): 機械学習と制御における従来の最適化手法は、一階更新ルールに大きく依存している。
特定のタスクに適したメソッドとハイパーパラメータを選択するには、しばしば試行錯誤や実践的な直観が必要となる。
我々は,インナーループ最適化ステップが微分可能凸最適化(dco)を解くメタラーニングフレームワークを提案することで,既存の更新ルールの幅広いファミリーを一般化する。
この手法の理論的魅力は,メタラーナーが類似したタスクに十分な露出を有することを考慮し,線形最小二乗問題の一段階の最適化を可能にすることにある。
dco更新規則の様々なインスタンス化を、様々な実験的な設定で従来のオプティマイザと比較する。
関連論文リスト
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Thenフレームワークは、機械学習モデルを使用して、最適化問題の未知のパラメータを、解決前の機能から予測する。
本稿では,共同予測モデルを用いて観測可能特徴から最適解を直接学習する手法を提案する。
論文 参考訳(メタデータ) (2024-09-07T19:52:14Z) - Narrowing the Focus: Learned Optimizers for Pretrained Models [24.685918556547055]
本稿では,一連の基本作業タスクによって提供される更新方向の階層固有の線形結合を学習する手法を提案する。
画像上で評価すると、これはAdamのような従来の既成の方法と既存の一般的な学習の両方で著しく優れています。
論文 参考訳(メタデータ) (2024-08-17T23:55:19Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
この設定における中心的な課題は最適化問題の解によるバックプロパゲーションであり、しばしば閉形式を欠いている。
本稿では, 非線形最適化の後方通過に関する理論的知見を提供し, 特定の反復法による線形システムの解と等価であることを示す。
Folded Optimizationと呼ばれるシステムが提案され、非ローリングなソルバ実装からより効率的なバックプロパゲーションルールを構築する。
論文 参考訳(メタデータ) (2023-12-28T23:15:18Z) - Predict-Then-Optimize by Proxy: Learning Joint Models of Prediction and
Optimization [59.386153202037086]
Predict-Then-フレームワークは、機械学習モデルを使用して、最適化問題の未知のパラメータを、解決前の機能から予測する。
このアプローチは非効率であり、最適化ステップを通じてバックプロパゲーションのための手作りの、問題固有のルールを必要とする。
本稿では,予測モデルを用いて観測可能な特徴から最適解を直接学習する手法を提案する。
論文 参考訳(メタデータ) (2023-11-22T01:32:06Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
1つの典型的な戦略はアルゴリズムのアンローリングであり、これは反復解法の操作による自動微分に依存している。
本稿では,非ロール最適化の後方通過に関する理論的知見を提供し,効率よく解けるバックプロパゲーション解析モデルを生成するシステムに繋がる。
論文 参考訳(メタデータ) (2023-01-28T01:50:42Z) - A Nonstochastic Control Approach to Optimization [26.744354103012448]
制御前提条件からの最近の手法が凸ノリティの課題を克服できることを示す。
メソッドのクラスから、類似の結果を後見で得る方法を学ぶことができる。
論文 参考訳(メタデータ) (2023-01-19T06:08:01Z) - Teaching Networks to Solve Optimization Problems [13.803078209630444]
反復解法をトレーニング可能なパラメトリック集合関数に置き換えることを提案する。
このようなパラメトリックな(集合)関数を学習することで、様々な古典的最適化問題を解くことができることを示す。
論文 参考訳(メタデータ) (2022-02-08T19:13:13Z) - Meta-Learning with Neural Tangent Kernels [58.06951624702086]
メタモデルのニューラルタンジェントカーネル(NTK)によって誘導される再生カーネルヒルベルト空間(RKHS)における最初のメタラーニングパラダイムを提案する。
このパラダイムでは,MAMLフレームワークのように,最適な反復内ループ適応を必要としない2つのメタ学習アルゴリズムを導入する。
本研究の目的は,1) 適応をRKHSの高速適応正則化器に置き換えること,2) NTK理論に基づいて解析的に適応を解くことである。
論文 参考訳(メタデータ) (2021-02-07T20:53:23Z) - Integrated Optimization of Predictive and Prescriptive Tasks [0.0]
予測タスクを記述タスクとして直接統合する新しいフレームワークを提案する。
予測アルゴリズムのパラメータを2レベル最適化技術により、処方問題内でトレーニングします。
論文 参考訳(メタデータ) (2021-01-02T02:43:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。