Ensemble Methods for Multi-Organ Segmentation in CT Series
- URL: http://arxiv.org/abs/2303.17956v1
- Date: Fri, 31 Mar 2023 10:37:19 GMT
- Title: Ensemble Methods for Multi-Organ Segmentation in CT Series
- Authors: Leonardo Crespi, Paolo Roncaglioni, Damiano Dei, Ciro Franzese, Nicola
Lambri, Daniele Loiacono, Pietro Mancosu, Marta Scorsetti
- Abstract summary: We present three types of ensembles of single-organ models able to produce multi-organ masks exploiting the different specialisations of their components.
The results are promising and prove that this is a possible solution to finding efficient multi-organ segmentation methods.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In the medical images field, semantic segmentation is one of the most
important, yet difficult and time-consuming tasks to be performed by
physicians. Thanks to the recent advancement in the Deep Learning models
regarding Computer Vision, the promise to automate this kind of task is getting
more and more realistic. However, many problems are still to be solved, like
the scarce availability of data and the difficulty to extend the efficiency of
highly specialised models to general scenarios. Organs at risk segmentation for
radiotherapy treatment planning falls in this category, as the limited data
available negatively affects the possibility to develop general-purpose models;
in this work, we focus on the possibility to solve this problem by presenting
three types of ensembles of single-organ models able to produce multi-organ
masks exploiting the different specialisations of their components. The results
obtained are promising and prove that this is a possible solution to finding
efficient multi-organ segmentation methods.
Related papers
- KA$^2$ER: Knowledge Adaptive Amalgamation of ExpeRts for Medical Images Segmentation [5.807887214293438]
We propose an adaptive amalgamation knowledge framework that aims to train a versatile foundation model to handle the joint goals of multiple expert models.
In particular, we first train an nnUNet-based expert model for each task, and reuse the pre-trained SwinUNTER as the target foundation model.
Within the hidden layer, the hierarchical attention mechanisms are designed to achieve adaptive merging of the target model to the hidden layer feature knowledge of all experts.
arXiv Detail & Related papers (2024-10-28T14:49:17Z) - AnatoMix: Anatomy-aware Data Augmentation for Multi-organ Segmentation [6.471203541258319]
We propose a novel data augmentation strategy for increasing the generalizibility of multi-organ segmentation datasets.
By object-level matching and manipulation, our method is able to generate new images with correct anatomy.
Our augmentation method can lead to mean dice of 76.1, compared with 74.8 of the baseline method.
arXiv Detail & Related papers (2024-03-05T21:07:50Z) - Enhancing Weakly Supervised 3D Medical Image Segmentation through
Probabilistic-aware Learning [52.249748801637196]
3D medical image segmentation is a challenging task with crucial implications for disease diagnosis and treatment planning.
Recent advances in deep learning have significantly enhanced fully supervised medical image segmentation.
We propose a novel probabilistic-aware weakly supervised learning pipeline, specifically designed for 3D medical imaging.
arXiv Detail & Related papers (2024-03-05T00:46:53Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
We propose a learnable weight-based hybrid medical image segmentation approach.
Our approach is easy to integrate into any hybrid model and requires no external training data.
Experiments on multi-organ and lung cancer segmentation tasks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-15T17:55:05Z) - Tailored Multi-Organ Segmentation with Model Adaptation and Ensemble [22.82094545786408]
Multi-organ segmentation is a fundamental task in medical image analysis.
Due to expensive labor costs and expertise, the availability of multi-organ annotations is usually limited.
We propose a novel dual-stage method that consists of a Model Adaptation stage and a Model Ensemble stage.
arXiv Detail & Related papers (2023-04-14T13:39:39Z) - Ambiguous Medical Image Segmentation using Diffusion Models [60.378180265885945]
We introduce a single diffusion model-based approach that produces multiple plausible outputs by learning a distribution over group insights.
Our proposed model generates a distribution of segmentation masks by leveraging the inherent sampling process of diffusion.
Comprehensive results show that our proposed approach outperforms existing state-of-the-art ambiguous segmentation networks.
arXiv Detail & Related papers (2023-04-10T17:58:22Z) - The Medical Segmentation Decathlon [37.44481677534694]
State-of-the-art image segmentation algorithms are mature, accurate, and generalize well when retrained on unseen tasks.
A consistent good performance on a set of tasks preserved their good average performance on a different set of previously unseen tasks.
The training of accurate AI segmentation models is now commoditized to non AI experts.
arXiv Detail & Related papers (2021-06-10T13:34:06Z) - Generalized Organ Segmentation by Imitating One-shot Reasoning using
Anatomical Correlation [55.1248480381153]
We propose OrganNet which learns a generalized organ concept from a set of annotated organ classes and then transfer this concept to unseen classes.
We show that OrganNet can effectively resist the wide variations in organ morphology and produce state-of-the-art results in one-shot segmentation task.
arXiv Detail & Related papers (2021-03-30T13:41:12Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
We propose Vicinal Labels Under Uncertainty (VLUU) to bridge the methodological gaps in partially supervised learning (PSL) under data scarcity.
Motivated by multi-task learning and vicinal risk minimization, VLUU transforms the partially supervised problem into a fully supervised problem by generating vicinal labels.
Our research suggests a new research direction in label-efficient deep learning with partial supervision.
arXiv Detail & Related papers (2020-11-28T16:31:00Z) - Uncertainty-aware multi-view co-training for semi-supervised medical
image segmentation and domain adaptation [35.33425093398756]
Unlabeled data is much easier to acquire than well-annotated data.
We propose uncertainty-aware multi-view co-training for medical image segmentation.
Our framework is capable of efficiently utilizing unlabeled data for better performance.
arXiv Detail & Related papers (2020-06-28T22:04:54Z) - Robust Medical Instrument Segmentation Challenge 2019 [56.148440125599905]
Intraoperative tracking of laparoscopic instruments is often a prerequisite for computer and robotic-assisted interventions.
Our challenge was based on a surgical data set comprising 10,040 annotated images acquired from a total of 30 surgical procedures.
The results confirm the initial hypothesis, namely that algorithm performance degrades with an increasing domain gap.
arXiv Detail & Related papers (2020-03-23T14:35:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.